Institut de Química Teòrica i Computacional de la Universitat de Barcelona (IQTCUB)

Activity Report 2015
The creation of the Institute of Theoretical Chemistry of the Universitat de Barcelona (IQTCUB) was approved on November 27th, 2007. The members of IQTCUB are professors and researchers from different departments of the Chemistry and Physics faculties of UB who employ methods of Computational Chemistry and/or Computational Physics (e.g. Quantum Chemistry, Solid State Modeling). The IQTCUB research activity focuses mainly in the field of Chemistry. Yet, this activity is quite different from what one expects from a traditional chemist. Indeed, the instruments used by the IQTCUB members cannot be found in a typical chemical laboratory but rather in a virtual “computational laboratory” with supercomputers having hundreds or thousands of processors.

The main goals of Theoretical and Computational Chemistry are: to achieve a detailed understanding of chemical process at the molecular level, to suggest new experiments by means of predictions that have to be experimentally proven, to interpret and provide a rationale of complex experimental results, and to devise new tools and concepts. Following these general objectives, the IQTCUB aims to design new materials and drug molecules with tailored properties, investigate new chemical reactions to obtain key products with improved efficiency and selectivity, to improve existing processes with respect to efficiency and environmental impact, and to propose new sources of sustainable energy. Although most of these goals are common to other scientific disciplines (given the interdisciplinary approach of modern research), the insights provided by theoretical and computational chemistry are unique and cannot be obtained with other methods. Therefore, the tools developed and employed in IQTCUB play a prime role in solving many pressing challenges faced by modern society.

Once again, this has been a difficult year with unprecedented cuts in the overall research budget of the whole country. Still, through the support of Research Vicerector, UB has renewed the compromise with the IQT. This is fully acknowledged by all personnel of the institute who otherwise could not carry out this research. In fact, without the support from the institution it would be impossible to maintain the computational infrastructure, which is essential to carry out a high-quality and competitive research. This is also thanks to the, often invisible, excellent technical staff that is responsible for keeping the whole computational framework working. This activity report evidences the IQTCUB vitality, the considerable scientific production in research lines as diverse as drug design, heterogeneous catalysis, nanostructures, novel materials, and atmospheric chemistry clearly demonstrates the growing impact of our research. We do hope that the IQTCUB project will continue to deserve the support of our university in the years to come. This will certainly be essential to further improve the scientific quality of IQTCUB, which was already recognized by external peer review evaluation in 2013.

Francesc Illas
Director de l'IQTCUB
Report Content

I. IQTCUB Overview ... 3

I.1 Direction team ... 3
I.2 IQTCUB Research Lines .. 4
I.3 IQTCUB Members ... 5
I.4 Technical Staff .. 8
I.5 Equipment ... 9

II. IQTCUB Activities .. 19

II.1 General Activities .. 19
II.2 IQTCUB Seminars and Conferences 23
II.3 IQTCUB Invited Researchers .. 25

III. Scientific Activity of IQTCUB Members 27

III.1 Highlights from most relevant results 27
III.2 Publications .. 45
 Articles
 Book chapters and proceedings
III.3 Other activities ... 59
 Doctoral Theses
 Masters Theses
 Scientific Conferences and Meetings
 Research Stays Abroad
 Participation in Competitive Funded Research Projects

Note: The above text is a table of contents for a report.
The Institute of Theoretical and Computational Chemistry of the Universitat de Barcelona (IQTCUB), was created by the university Government Board on November 27th, 2007, with the main goal of enhancing and supporting scientific research in Theoretical and Computational Chemistry at the Universitat de Barcelona by organizing the research in four main lines and promoting and supporting interdisciplinary activities which will allow to tackle the new challenges in this scientific discipline.

1.1 DIRECTION TEAM

Prof. Francesc Illas Riera Director
Prof. Ramón Sayós Ortega Treasurer and Secretary
Prof. Carme Rovira Virgili Board member
I. IQTCUB OVERVIEW

I.2 IQTCUB RESEARCH LINES

Scientific research currently being carried out at the IQTCUB can be viewed as classified in the following four main research lines.

1. Methods, algorithms and computational tools development

 Here we focus on theories and algorithms devoted to account for electronic correlation, nuclear motion, quantum structure-activity, continuous symmetry measures, molecular modelling, variational state transition theory and magnetic resonance. Further developing of Monte Carlo, molecular dynamics and Brownian dynamics is also envisaged.

2. Computational Materials Science

 In this research area we employ computational methods, ranging from high-level quantum chemistry and ab initio molecular dynamics to classical simulation methods, to investigate the bulk, surface and nanoscale properties of a broad class of solid materials, such as complex inorganic compounds, molecular crystals and heterogeneous catalysts.

3. Computational Biochemistry and Soft Matter

 Using the arsenal of available computational methods, from electronic structure based methods to classical simulations, we focus on systems of biological interest. In particular we investigate the structure and reactivity of proteins and enzymes, drug design, processes in cellular membranes, enzymatic reactions in crowded media and soft nanoparticles in solution.

4. Reactivity and Reaction Dynamics

 Research in this area uses quantum, classical and statistical mechanics methods to analyse the dynamics of elementary reactions, electronic excited states and atmospheric and combustion reactions. Continuum methods are also used to investigate macromolecular complexation reactions in aqueous media.
I.3 IQTCUB MEMBERS

IQTCUB involves a total of 83 professors and researchers: The full list of members of IQTCUB (including the corresponding academic situation and affiliation within UB) is provided below.

<table>
<thead>
<tr>
<th>Family Name</th>
<th>Name</th>
<th>Department/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Professors (Catedràtics)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aguilar Navarro</td>
<td>Antonio</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Alemany i Cahner</td>
<td>Pere</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Alvarez Reverter</td>
<td>Santiago</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Bofill Villà</td>
<td>Josep Maria</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>González Pérez</td>
<td>Miguel</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Illas Riera</td>
<td>Francesc</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Mas Pujadas</td>
<td>Francesc</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Novoa Vide</td>
<td>Juan José</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Rubio Martínez</td>
<td>Jaime</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Ruiz Sabin</td>
<td>Eliseo</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>Sayós Ortega</td>
<td>Ramón</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Associate Professors (Professors Titulats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberti Wirsing</td>
<td>Margarita</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Costa Sala</td>
<td>Ramón</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>De Andrés Llopis</td>
<td>Jaime</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>De Pinho Ribeiro Moreira</td>
<td>Ibério</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Giménez Font</td>
<td>Xavier</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Huarte Larrañaga</td>
<td>Fermín</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Lucas Alcorta</td>
<td>Josep Maria</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Llunell Marí</td>
<td>Miquel</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Mota Valeri</td>
<td>Fernando</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Paniagua Valle</td>
<td>Juan Carlos</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Solé Sabaté</td>
<td>Albert</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Sousa Romero</td>
<td>Carme</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>Vilaseca Font</td>
<td>Eudald</td>
<td>Physical Chemistry</td>
</tr>
</tbody>
</table>
Other categories (Professors Agregats i Lectors)

- Aullón López Gabriel Inorganic Chemistry
- Deumal Solé Mercè Physical Chemistry
- Gamallo Belmonte Pablo Physical Chemistry
- Madurga Díez Sergio Physical Chemistry
- Ribas Ariño Jordi Physical Chemistry
- Reigada Sanz Ramón Physical Chemistry

Other categories (Professors Associats)

- Gómez Coca Silvia Inorganic Chemistry
- Jover Modrego Jesús Inorganic Chemistry
- Tercero Mohedano Javier Inorganic Chemistry

ICREA Research Professors

- Bromley Stefan T. Physical Chemistry
- Neyman Konstantin M. Physical Chemistry
- Rovira Virgili Carme Organic Chemistry

Postdoctoral contracts

Beatriu de Pinós-Marie Curie

- Cirera Fernández Jordi Inorganic Chemistry
- Echeverría López Jorge Inorganic Chemistry

Beatriu de Pinós

- Albareda Piquer Guillem IQTCUB
- Jornet Somoza Joaquim Physical Chemistry

Ramón y Cajal contract

- Viñes Solana Francesc Physical Chemistry

Other

- Alfonso Prieto Mercedes Organic Chemistry
- Álvarez Falcón Leny Physical Chemistry
- Chul Ko Kyoung Physical Chemistry
- Kovács Gábor Physical Chemistry
- Kozlov Sergey M. Physical Chemistry
- Valero Rosendo Physical Chemistry
Ph D students

FPI (Associated with Ministerio Research Grants)

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Last Name</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alonso Gil</td>
<td>Santiago</td>
<td>Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Climent Biescas</td>
<td>Clàudia</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Falceto Palacín</td>
<td>Andrés</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Jurado Sáez</td>
<td>Manuel</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Posada Pérez</td>
<td>Sergio</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Vilà Casanova</td>
<td>Arnau</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

FPU (Spanish Ministerio Program)

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Last Name</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcon Rovira</td>
<td>Isaac</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Amoza Dávila</td>
<td>Martín</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Garrido Sagargazu</td>
<td>Eduardo</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Mondelo Martell</td>
<td>Manel</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Rojas Cervellera</td>
<td>Victor</td>
<td>Organic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

UB own program

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Last Name</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blancofort Jorquera</td>
<td>Miquel</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Fumanal Quintana</td>
<td>Maria</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Lamiel Garcia</td>
<td>J. Oriol</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Raich Armendáriz</td>
<td>Lluís</td>
<td>Organic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

FI (Catalan Government Program)

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Last Name</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>López Marne</td>
<td>Estefanía</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Prats García</td>
<td>Hèctor</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Other funding

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Last Name</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alonso Benito</td>
<td>Gerard</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Balcells Nadal</td>
<td>Cristina</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Cebrían Prats</td>
<td>Anna</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Cuko</td>
<td>Andi</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Figueroba Sánchez</td>
<td>Alberto</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Francese</td>
<td>Tommaso</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Jiménez Grávalos</td>
<td>Fernando</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Macià Escatllar</td>
<td>Antoni</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Manadé Company</td>
<td>Montserrat</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Martín Rodríguez</td>
<td>Alejandro</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Maxwell Villacorta</td>
<td>Lindley</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Millán Alvares</td>
<td>Maria Angeles</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Muñoz Galán</td>
<td>Helena</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Notario Estévez</td>
<td>Almudena</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Omidvar</td>
<td>Akbar</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Pueyo Bellafont</td>
<td>Noelia</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
</tbody>
</table>
I.4 TECHNICAL STAFF

Apart from the academic and research personnel whose main activity is scientific research in theoretical and computational chemistry at IQTCUB, two technical staff members take care of maintenance of the computational infrastructure, their work is extremely important since they also implement the codes and optimize their performance.

Jordi Inglés Camats
System Administrator Manager

Teresa Arenal Porcel
System Administrator
I. IQTCUB OVERVIEW

I.5 EQUIPMENT

Currently, the IQTCUB computational facilities consist of seven calculation clusters located in two conditioned rooms of the Chemistry Faculty of UB. All the clusters except iqtc06 are located in a room near the garage of the faculty where it is cooled by two air conditioning machines of 47,000 and 66,000 KW respectively. Iqtc06 is located in a room called VAX, which is cooled by an air conditioner machine of 30,000 KW and another two of 9,000 KW.

CALCULATION CLUSTERS

 cerq2 (approximate value 400,000 €)

<table>
<thead>
<tr>
<th>Machine type</th>
<th>SUN cluster (4 racks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>SLES10</td>
</tr>
<tr>
<td>Services</td>
<td>Calculation cluster and disk server (raid of 2.5TB). Internal DHCP server</td>
</tr>
<tr>
<td>Structure</td>
<td>Master + 111 nodes</td>
</tr>
<tr>
<td>Notes</td>
<td>There are heterogeneous nodes with 32 and 64 bit processors.</td>
</tr>
<tr>
<td>Specifications</td>
<td></td>
</tr>
<tr>
<td>Master</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>1.80Ghz Opteron Dual processor (64bits)</td>
</tr>
<tr>
<td>RAM</td>
<td>8GB</td>
</tr>
<tr>
<td>HD</td>
<td>1x146GB hard disk + 2.5TB direct attached storage</td>
</tr>
<tr>
<td>Network</td>
<td>2 gigabit network cards (one for external network and one for calculation network)</td>
</tr>
<tr>
<td>7 Sun Fire V60X nodes (3.06Ghz processor)</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>3.06GHz Xeon Dual processor (32 bits)</td>
</tr>
<tr>
<td>RAM</td>
<td>3GB</td>
</tr>
<tr>
<td>HD</td>
<td>2x36GB hard disk</td>
</tr>
<tr>
<td>Network</td>
<td>2 gigabit network cards (calculation network)</td>
</tr>
<tr>
<td>92 Sun Fire V60X nodes (2.80GHz processor)</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>2.80GHz Xeon Dual processor (32 bits)</td>
</tr>
<tr>
<td>RAM</td>
<td>6 nodes with 4GB, 86 nodes with 3GB</td>
</tr>
<tr>
<td>HD</td>
<td>2x36GB hard disk</td>
</tr>
<tr>
<td>Network</td>
<td>2 gigabit network cards (calculation network)</td>
</tr>
<tr>
<td>11 Sun Fire V20Z nodes (1.80GHz processor)</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>1.80GHz Opteron Dual processor (64 bits)</td>
</tr>
<tr>
<td>RAM</td>
<td>10 nodes with 8GB, 2 nodes with 16GB</td>
</tr>
<tr>
<td>HD</td>
<td>10 nodes with 2x73GB hard disk, 2 nodes with 2x73GB and 2x300GB hard disk</td>
</tr>
</tbody>
</table>
respectively
Network: 2 gigabit network cards (calculation network)

1 Sun Fire V20Z node 64 bits (2.20GHz processor)
CPU: 2.20GHz Opteron Dual processor (64 bits)
RAM: 16GB
HD: 2x146GB hard disk
Network: 2 gigabit network cards (calculation network)

iqtc01 (approximate value 250.000 €)

<table>
<thead>
<tr>
<th>Machine type</th>
<th>HP cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>Debian Stable</td>
</tr>
<tr>
<td>Services</td>
<td>Calculation cluster</td>
</tr>
<tr>
<td>Structure</td>
<td>80 nodes</td>
</tr>
<tr>
<td>Notes</td>
<td>64 bits processors</td>
</tr>
</tbody>
</table>

Specifications

80 AMD HP ProLiant DL145 G2 nodes
CPU: 2x2.2GHz AMD Opteron 275 Dualcore
RAM: 8GB
HD: 2x80GB hard disk
Network: 2 gigabit network card (calculation network) + 1 ILO card (out of band network, OOB)

iqtc02 (approximate value 78.000 €)

<table>
<thead>
<tr>
<th>Machine type</th>
<th>HP cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>SLES10</td>
</tr>
<tr>
<td>Services</td>
<td>Calculation cluster</td>
</tr>
<tr>
<td>Structure</td>
<td>26 nodes</td>
</tr>
<tr>
<td>Notes</td>
<td>64 bits processors</td>
</tr>
</tbody>
</table>

Specifications

17 INTEL HP ProLiant DL160 G5 nodes
CPU: 2x2.66GHz Xeon QuadCore
RAM: 16GB
HD: 2x250GB hard disk
Network: 2 gigabit network card (calculation network) + 1 ILO card (OOB)

5 INTEL HP ProLiant DL160 G5 nodes
CPU: 2x2.66GHz Xeon QuadCore
RAM: 16GB
HD: 4x250GB hard disk
Network: 2 gigabit network card (calculation network) + 1 ILO card (OOB)

1 INTEL HP ProLiant DL160 G5 nodes
CPU: 2x2.66GHz Xeon QuadCore
RAM: 16GB
I. IQTCUB OVERVIEW

HD: 2x500GB hard disk
Network: 2 gigabit network card (calculation network) + 1 ILO card (OOB)

3 INTEL HP ProLiant DL160 G5 nodes
CPU: 2x2.66GHz Xeon QuadCore
RAM: 32GB
HD: 2x250GB hard disk
Network: 2 gigabit network card (calculation network) + 1 ILO card (OOB)

iqtc03 (approximate value 33.000 €)

Machine type HP cluster
Operating System SLES10
Services Calculation cluster
Structure 11 nodes
Notes 64 bits processors. Merged with iqtc02 cluster

10 INTEL HP ProLiant DL140 G3 nodes
CPU: 2x2.33GHz Xeon QuadCore
RAM: 16GB
HD: 2x80GB hard disk
Network: 2 gigabit network card (calculation network) + 1 ILO card (OOB)

1 INTEL HP ProLiant DL140 G3 nodes
CPU: 2x2.33GHz Xeon QuadCore
RAM: 32GB
HD: 2x80GB hard disk
Network: 2 gigabit network card (calculation network) + 1 ILO card (OOB)

iqtc04 (approximate value 460.000 €)

Machine type HP cluster
Operating System SLES11
Services Calculation cluster
Structure 101 nodes
Notes 64 bits processors. Infiniband network

95 INTEL HP ProLiant DL160 G6 nodes
CPU: 2x2.66GHz Xeon SixCore
RAM: 48GB
HD: 1x1TB hard disk
Network: 2 gigabit network card (internal data network) + 2 infiniband network (calculation network) + 1 ILO card (IAM)

4 INTEL HP ProLiant DL160 G6 nodes
CPU: 2x2.66GHz Xeon SixCore
RAM: 48GB
HD: 4x500GB hard disk
Network: 2 gigabit network card (internal data network and calculation network) + 1 ILO card (OOB)

2 INTEL HP ProLiant DL160 G6 nodes
- CPU: 2x2.66GHz Xeon SixCore
- RAM: 48GB
- HD: 1x500GB hard disk
- Network: 2 gigabit network card (internal data network and calculation network) + 1 ILO card (OOB)

iqtc05 (approximate value 32,000 €)

<table>
<thead>
<tr>
<th>Machine type</th>
<th>SGI Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>SLES11</td>
</tr>
<tr>
<td>Services</td>
<td>Calculation cluster</td>
</tr>
<tr>
<td>Structure</td>
<td>4 nodes</td>
</tr>
<tr>
<td>Notes</td>
<td>64 bits processors</td>
</tr>
</tbody>
</table>

Specifications

4 AMD SGI H2106-G7 nodes
- CPU: 4x2.3GHz Opteron 6276 16-core
- RAM: 256GB
- HD: 2x1TB hard disk
- Network: 2 gigabit network card (calculation network) + 1 IPMI card (OOB)

iqtc06 (approximate value 400,000 €)

<table>
<thead>
<tr>
<th>Machine type</th>
<th>Heterogeneous Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>SLES11</td>
</tr>
<tr>
<td>Services</td>
<td>Calculation cluster</td>
</tr>
<tr>
<td>Structure</td>
<td>28 nodes</td>
</tr>
<tr>
<td>Notes</td>
<td>64 bits processors</td>
</tr>
</tbody>
</table>

Specifications

25 INTEL HP ProLiant DL560 Gen8 nodes
- CPU: 4x2.2GHz Xeon OctoCore
- RAM: 512GB
- HD: 2x300GB hard disk
- Network: 4 gigabit network card (calculation network) + 1 IPMI card (OOB)
- Network: 2 10gigabit network card (internal data network)

6 INTEL Supermicro SuperServer 8017R-TF+
- CPU: 4x2.3GHz Xeon OctoCore
- RAM: 512GB
- HD: 3x1TB hard disk
Network: 2 gigabit network card (calculation network) + 1 IPMI card (OOB)
Network: 2 10 gigabit network card (internal data network)

GPU cluster (approximate value 35.000 €)

<table>
<thead>
<tr>
<th>Machine type</th>
<th>Heterogeneous Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>SLES11</td>
</tr>
<tr>
<td>Services</td>
<td>Calculation cluster with GPUs</td>
</tr>
<tr>
<td>Structure</td>
<td>4 nodes</td>
</tr>
<tr>
<td>Notes</td>
<td>64 bits processors</td>
</tr>
</tbody>
</table>

Specifications

Node

CPU: 1x3.06GHz Intel Core i7 950
RAM: 16GB
HD: 1x1TB hard disk
Network: 1 gigabit network card (calculation network)
GPU: 1 NVIDIA GTX580, 1 NVIDIA GTX480

Node Tyan FT72B7015

CPU: 2x2.66GHz Xeon SixCore
RAM: 48GB
HD: 1x500GB hard disk
Network: 4 gigabit network card (calculation network) + 1 IPMI card (OOB)
GPU: 8 NVIDIA GTX580

Node

CPU: 1x3.30GHz AMD FX-4100 QuadCore
RAM: 16GB
HD: 1x1TB hard disk
Network: 1 gigabit network card (calculation network)
GPU: 1 NVIDIA GTX770

Node ASUS ESC4000 G2

CPU: 2x2GHz Xeon SixCore
RAM: 32GB
HD: 1x2TB hard disk
Network: 2 gigabit network card (calculation network) + 1 IPMI card (OOB)
GPU: 4 NVIDIA GTX TITAN

Node ASUS ESC4000 G2

CPU: 2x2.4GHz Xeon SixCore
RAM: 32GB
HD: 1x1TB hard disk
Network: 2 gigabit network card (calculation network) + 1 IPMI card (OOB)
GPU: 4 NVIDIA GTX TITAN BLACK
Node AZServer 4G3S

CPU: 2x2.4GHz Xeon E5-2620v3
RAM: 32GB
HD: 1x1TB hard disk
Network: 2 gigabit network card (calculation network) + 1 IPMI card (OOB)
GPU: 4 NVIDIA GTX 980

Servers

Glusterfs disk server (approximate value 30.000 €)

Machine type
DELL cluster

Operating system
SLES 11

Services
Storage service cluster with 8TB of space for applications directories and user's work area exported by GlusterFS

Structure
2 nodes

Notes
Storage service with a dedicated UPS and redundant power supply

Specifications

2 INTEL DELL PowerEdge 2950 nodes

CPU: 2x2.50GHz Xeon QuadCore E5420
RAM: 8GB
HD: 4x1TB (raid 5)
Network: 2 gigabit network card (internal network)

Machine type
HP cluster

Operating system
SLES 11

Services
Storage service cluster with 32TB of space for user's data exported by GlusterFS

Structure
2 nodes

Notes
Storage service with a dedicated UPS and redundant power supply

Specifications

1 INTEL HP ProLiant DL180 G6 node

CPU: 2x2.27GHz Xeon QuadCore E5520
RAM: 56GB
HD: 12x2TB (raid 5)
Network: 2 gigabit network card (internal network) + 1 IPMI card (OOB)

1 INTEL HP ProLiant DL380e Gen8 node

CPU: 2x2.20GHz Xeon QuadCore E5-2407
RAM: 48GB
HD: 12x2TB (raid 5)
Network: 2 gigabit network card (internal network) + 1 IPMI card (OOB)

Portal (user access servers) (approximate value 2.300 €)
- **Machine type**: 2 redundant HP ProLiant DL120 G5 nodes
- **Operating system**: Debian stable
- **Services**: SGE Execution Host, Heartbeat, ssh server
- **Structure**: 2 redundant nodes
- **Notes**: User access servers for submitting jobs and accessing user data. Critical service connected with a UPS

Specifications

2 INTEL HP ProLiant DL120 G5 node
- CPU: 1x2.33GHz Xeon Dual Core
- RAM: 8GB
- HD: 1x160GB hard disk
- Network: 2 gigabit network card (internal network)

Virtualization servers (approximate value 18.300 €)

- **Machine type**: 4 redundant nodes
- **Operating system**: Debian stable
- **Services**: Xen, DRBD, IQTCUB internal services
- **Structure**: 4 redundant nodes
- **Notes**: Servers that contains the Xen virtual machines with the IQTCUB's internal services (SGE, dhcp, license server, etc.). Critical service connected with a UPS

Specifications

- **2 INTEL DELL PowerEdge 2950 nodes**
 - CPU: 2x2.50GHz Xeon QuadCore E5420
 - RAM: 8GB
 - HD: 2x1TB (raid 1)
 - Network: 3 gigabit network card (internal network)

- **2 INTEL HP ProLiant DL120 G5 node**
 - CPU: 1x2.33GHz Xeon Dual Core
 - RAM: 8GB
 - HD: 2x160GB hard disk
 - Network: 3 gigabit network cards (internal network)

Graphical applications server (approximated value 3.000 €)

- **Machine type**: 1 HP ProLiant DL385 node
- **Operating system**: Debian Stable
- **Services**: Server for the use of graphical applications (gaussview, p4vasp, etc.)
I. IQTCUB OVERVIEW

Structure
1 node

Notes
Server connected to an UPS

Specifications

1 AMD HP ProLiant DL385 node
CPU : 2x2.2GHz AMD Opteron 275 Dualcore
RAM: 4GB
HD: 6x146GB hard disk
Network: 1 10/100 network (external network) + 1 gigabit network (internal network)

OTHERS

The IQTCUB have other services to provide service to the IQTCUB's users.

• Backup server DELL R515 (backup server with 4TB of disk capacity connected to a UPS)
• Tape library server HP MSL4048 (48 tapes with approximately 48TB of space, ~1TB/tape)
• Administration server (laptop with 3 network cards for critical incidences support)
• Proxy server (server that allows the access to the public network from IQTCUB's network)
• Switch Layer 3 HP Procurve with 24 ports (used for the IQTCUB's date centre infrastructure)
• 8 Switchs Layer 2 Dlink with 48 ports (internal network for cerqt2, iqtc01, iqtc02, iqtc03 clusters)
• 4 Switchs Layer 2 HP with 48 ports (internal network for iqtc04, iqtc05 and iqtc06 cluster)
• 3 Switchs Infiniband Voltaire with 36 ports (calculation network for iqtc04 cluster)
• Modular switch HP (8 calculation network modules for iqtc01,iqtc02, iqtc03 clusters)
• 2 Modular switch HP 10GB (calculation network for iqtc06 and data network for the glusterfs servers)
The approximated total cost of this equipment is 50.000€

SUMMARY

Cores ... 3326 CPUs
Memory ... 23224 GB RAM
Calculation disk capacity 176 TB
Data user disk capacity 32 TB

The approximated total cost, considering also the consumables such as network cables and other material is

2.145.000 €*

*This value does not include the cost of the air conditioning machines and electrical panels.

One of the clusters for intensive computation at IQTCUB
II. IQTCUB ACTIVITIES

II.1 GENERAL ACTIVITIES

Next, a description of activities and actions promoted by IQTCUB through 2015 is provided.

a. 6th IQTCUB workshop. This one-day workshop aimed at the dissemination of the research done at the IQTCUB took place on July 3rd, 2015. The IQTCUB members and internationally acknowledged speakers present the most recent work. This year we highlight the participation of Prof. Leticia González from University of Vienna, and Dr. Guillem Albareda, Dr. Pablo Gamallo, Dr. Xavier Barril, Dr. Jordi Cirera, and Mr. Daniel Reta from Universitat de Barcelona. The IQTCUB assigned a budget to cover the traveling expenses of Prof. González as well as the catering service offered to all assistants. Total cost: 1040 €.
b. *Promotion and encouragement of research.* This year the IQTCUB has finally offered one contract (around 2000 € per contract) aimed to help students to initiate a scientific career. These contracts are addressed to students about to end the degree and aimed to cover a six month period to facilitate the student to pursue an official Master at UB as well as collaborating in some of the research projects of the IQTCUB groups. The contract has been awarded to Mr. Pablo Miguel Blanco Andrés. Total cost: 2000 €

![Contract Announcement](image)

Ajuts d’iniciació a la RECERCA

NOUS CONTRACTES

L’Institut de Química Teòrica i Computacional de la Universitat de Barcelona, oferta CONTRACTES per ajudar a realitzar un MASTER OFICIAL de la UB als estudiants interessats en col·laborar amb línies de recerca de l’institut

![Website](www.iqtc.ub.es/AjutsMaster)

c. Introductory course in Computational Chemistry. The main goal of this course is to initiate chemistry undergraduate students in the possibilities of Computational Chemistry. The course takes place during a whole week and is mainly addressed to Chemistry and Chemical Engineering students at the UB. The 2015 edition has been the fifth one and has been very successful with over 30 students requesting to participate. With respect to previous editions we have included a session oriented towards the visualization of biomolecules. Topics covered have been:

- Materials science
- Diffusion processes
- Molecular representation
- Visualization of biomolecules
- Advanced programming
- Advanced Linux

The course took place from June 25th to July 1st with an attendance of 25 students. IQTCUB has covered catering expenses with a total cost of 250 €.
d. Advanced Course in Computational Chemistry. Fuelled by the positive feedback received from the students in the previous editions we have offered again this year a course at a more advanced level with the main goal of improving previous knowledge in use of computers and, in particular, on Computational Chemistry. Participants in the course are usually students who have taken part in the introductory course or Chemistry undergraduates who have followed a Quantum Chemistry course. The course took place in July, 2nd-9th with an attendance of 11 students. IQTCUB has covered catering expenses with a total cost of 240 €.
e. **Intensive Course of the European Master on Theoretical Chemistry and Computational Modelling.** This course took place at the University of Barcelona from January 11th to February 6th, with an attendance of 30 students from different Spanish universities. This course, which was coordinated by Prof. Ramón Sayós (an IQTCUB member), involved 21 lecturers (some of them being members of IQTCUB).
II.2 IQTCUB SEMINARS AND CONFERENCES

Nine seminars have been organized by IQTCUB during 2015.

1. **Prof. Luca Gavioli** (Università Cattolica del Sacro Cuoro) Italy

 Synthesis of nanoparticles by non-thermal laser ablation and supersonic cluster beam deposition

 March 4th, 2015

2. **Prof. Frank Hagelberg** (East Tennessee State University) USA

 Novel Materials Based on Carbon Nanostructures

 March 9th, 2015

3. **Prof. Isabelle André** (Université de Toulouse) France

 The contribution of structural computational biology to the engineering of enzymes and the development of novel synthetic reactions

 March 27th, 2015

4. **Prof. Vladimír Sychrovský** (Institute of Organic Chemistry and Biochemistry) Czech Republic

 The catalytic mechanism of hOGG1 base-excision repair enzyme; the theoretical modeling of reaction channels and substrate activation

 May 27th, 2015

5. **Prof. Jen-Shiang K. Yu** (National Chio Tung University) Taiwan

 Electronic Structure of Open-Shell Tetrahedral (Fe(NO)₉) 9 Complexes

 June 30th, 2015

6. **Prof. Markus Wilde** (University of Tokyo) Japan

 Hydrogen transportation across palladium surfaces: Mechanism, structure sensitivity, and control

 July 2nd, 2015
II. IQTCUB ACTIVITIES

7. **Prof. Olga Lopez-Acevedo** (Aalto University) Finnland

 DNA Base Pairing by Noble Metals: Structure and Electronic Properties from Density Functional Theory

 July 16th, 2015

8. **Prof. Peter J. Reilly** (Iowa State University) USA

 The Wonderful Enzyme Zoo

 October 16th, 2015

9. **Prof. Vladimiro Mujica** (Arizona State University) USA

 Influence of Molecular Chirality in STM junctions and long-distance ET in biological systems

 November 30th, 2015
II.3 IQTCUB INVITED RESEARCHERS

During 2015, a total of nine researchers from all over the world have spent some time at the IQTCUB collaborating in different research projects.

1. **Prof. Boutheina Kerkeni** (visitor within a COST program)
 Sungkyunkwan University, South-Korea
 March-June, 2015

2. **MsC. Daeheum Cho** (invited visitor)
 Sungkyunkwan University, South-Korea
 March-June, 2015

3. **David Mora Fonz** (visitor within a COST program)
 University College London, UK
 June-July, 2015

4. **MsC. Sunkyong Kim** (invited visitor)
 Sungkyunkwan University, South-Korea
 June-September, 2015

5. **Prof. José Manuel Granadino Rodán** (invited visitor)
 Universitat de Jaén, Spain
 July-September, 2015

6. **Mr. Christian Kunkel** (invited visitor)
 University of Wurzburg, Germany
 July-September, 2015

7. **Prof. Hristiyan Aleksandrov** (invited visitor)
 University of Sofia, Bulgaria
 September, 2015
8. **Dr. Ali Abedi** (invited visitor)
 University of the Basque Country, Spain
 October, 2015

9. **Dr. Fatma Benyettou** (invited visitor)
 Centre Universitaire de Ain Témouchent, Algeria
 November, 2015
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

III.1 HIGHLIGHTS FROM MOST RELEVANT RESULTS

Here some of the most relevant results corresponding to every IQTCUB main research line are presented.

LINE 1. METHODS, ALGORITHMS AND COMPUTATIONAL TOOLS DEVELOPMENT

Conditional Born-Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine

We report a new theoretical approach to solve adiabatic quantum molecular dynamics halfway between wave function and trajectory-based methods. The evolution of a N-body nuclear wave function moving on a 3N-dimensional Born–Oppenheimer potential-energy hyper-surface is rewritten in terms of single-nuclei wave functions evolving nonunitarily on a 3-dimensional potential-energy surface that depends parametrically on the configuration of an ensemble of generally defined trajectories. The scheme is exact and, together with the use of trajectory-based
statistical techniques, can be exploited to circumvent the calculation and storage of many-body quantities (e.g., wave function and potential-energy surface) whose size scales exponentially with the number of nuclear degrees of freedom. As a proof of concept, we present numerical simulations of a 2-dimensional model porphine where switching from concerted to sequential double proton transfer (and back) is induced quantum mechanically.

5D quantum dynamics of the H$_2$@SWNT system: Quantitative study of the rotational-translational coupling

M. Mondelo-Martell, F. Huarte-Larrañaga.

Groundstate of H$_2$ encapsulated in a (8,0) SWCNT. Translational (upper panel) and rotational (lower panel) functions.

The dynamics of the dihydrogen molecule when confined in carbon nanotubes with different chiralities and diameters are studied by using a 5 dimensional model considering the most relevant degrees of freedom of the system. The nuclear eigenstates are calculated for an (8,0) and a (5,0) carbon nanotubes by the State-Average Multiconfigurational Time-dependent Hartree, and then studied using qualitative tools (mapping of the total wave functions onto given subspaces) and more rigorous analysis (different kinds of overlaps with reference functions). The qualitative analysis is seen to fail due to a strong coupling between the internal and translational degrees of freedom. Using more accurate tools allows us to gain a deeper insight into the behaviour of confined species.
Self-assembled trityl radical capsules – implications for dynamic nuclear polarization.

OX63 is a stable and water-soluble organic radical widely used in dynamic nuclear polarization (DNP). DFT calculations have shown that the molecule has a very stable dome-shaped conformation, and that two of these domes can be coupled together via three hydrogen bonds to form a sort of capsule, that can accommodate molecules as large as tetramethylammonium. This facts have a large impact on the behavior of OX63 in DNP, and allowed to explain several experimentally observed peculiarities.
LINE 2. COMPUTATIONAL MATERIALS SCIENCE

Distortion Pathways of Transition Metal Coordination Polyhedra Induced by Chelating Topology
S. Alvarez.

A continuous shape measures analysis of the coordination polyhedra of a host of transition metal complexes with bi- and multidentate ligands discloses the distortion pathway associated with each particular topology of the chelate rings formed. Since the degree of distortion within each family of complexes depends on the atomic size, on which the high- or low-spin state has a large effect, the analysis presented is specially interesting to identify distortions that go along with the transition from low to high spin state affected by temperature, light or pressure. Deviations from the expected distortion pathways in the high spin state are shown to be associated to the onset of intermolecular interactions such as secondary coordination of counterions or solvent molecules. Also significant displacement of counterions in an extended solid may result from the changes in metal-ligand bond distances when ligands are involved in intermolecular hydrogen bonding.
Dynamical effects on the magnetic properties of dithiazolyl bistable materials

The magnetic properties of molecule-based magnets are commonly rationalized by considering only a single nuclear configuration of the system under study (usually an X-ray crystal structure). In this computational work, we have compared the results obtained using such a static approach with those obtained by explicitly accounting for thermal fluctuations, and uncovered the serious limitations of the static perspective when dealing with magnetic crystals whose radicals undergo wide-amplitude motions. As a proof of concept, these limitations have been illustrated for the magnetically bistable 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) material. For its high-temperature phase at 300 K, we have shown that nuclear dynamics induce large fluctuations in the magnetic exchange interactions (J_{AB}) between spins (up to 1000% of the average value). These deviations result in a ~20% difference between the 300 K magnetic susceptibility computed by explicitly considering the nuclear dynamics and that computed using the X-ray structure, the former being in better agreement with the experimental data. The unveiled strong coupling between J_{AB} interactions and intermolecular vibrations reveals that considering J_{AB} as a constant value at a given temperature (as always done in molecular magnetism) leads to a flawed description of the magnetism of TTTA. Instead, the physically relevant concept in this case is the statistical distribution of J_{AB} values. The discovery that a single X-ray structure is not adequate enough to interpret the magnetic properties of TTTA is also expected to be decisive in other organic magnets with dominant exchange interactions propagating through labile π-π networks.
We have studied the performance of a series of multi-reference wave function and density functional theory based methods in predicting the magnetic coupling constants of heterodinuclear magnetic complexes. When using MR-WF methods the performance is found to be similar to other simple cases involving homodinuclear Cu(II) complexes, being the accuracy limited by the amount of dynamical correlation accounted for. When using DFT based methods, the usual broken symmetry approach provides a convenient framework to predict the magnetic coupling constants, although spin projection based techniques cannot recover the corresponding spin adapted solution. We have shown that a mapping procedure using the expectation values of the Heisenberg Hamiltonian in combination with a careful selection of the appropriate broken symmetry determinants provides a consistent relationship to derive J values from the BS solutions. Our trials using spin flip techniques lead to unphysical outcomes.
Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction

Experiments and computational modelling confirm the existence of the Kondo effect in an organic radical in a single molecule junction.
How to determine accurate chemical ordering in several nanometer large bimetallic crystallites from electronic structure calculations

S.M. Kozlov, G. Kovács, R. Ferrando, K.M. Neyman

Nanoalloys have a new degree of freedom compared to monometallic particles - the chemical ordering (COR) - the pattern, in which different atoms are located in the particle. The COR defines surface reactivity of nanoalloys. Experimental determination of the COR in bimetallic particles is very laborious. Also, calculation of the COR is a great challenge due to enormous number of possible mutual atomic positions in nanoparticles. We proposed an innovative method to accurately ascertain the COR using results of only several density functional calculations. This method immediately reveals why a certain COR is preferred. We unravelled the COR and binding nature in Pd\textsubscript{70}Au\textsubscript{70}, Pd\textsubscript{70}Ag\textsubscript{70}, Pd\textsubscript{70}Cu\textsubscript{70} and Pd\textsubscript{70}Zn\textsubscript{70} nanoparticles. The power of the method is also illustrated by optimizing the COR in larger Pd\textsubscript{732}Au\textsubscript{731}, Pd\textsubscript{732}Ag\textsubscript{731}, Pd\textsubscript{732}Cu\textsubscript{731} and Pd\textsubscript{732}Zn\textsubscript{731} particles, whose size ~4.4 nm is common in catalytic applications.
Links between the crystal and electronic structure in the new family of unconventional superconductors $A_2Cr_3As_3$ ($A = K, Rb, Cs$)

P. Alemany, E. Canadell

The electronic structure of a new family of superconductors is examined through density functional theory calculations. In contrast with other quasi-1D superconductors, these phases exhibit a relatively complex electronic structure and the Fermi surface contains both 1D and 3D components. It is shown that cations have an almost nil influence on the electronic structure. The absence of a structural Peierls modulation is discussed, and the differences with the structurally related $M_2Mo_6Se_6$ ($M = Tl, In, ...$) superconductors are stressed. The large electron mass renormalization and the lack of clear correlation between $N(e_F)$ and T_c suggest the existence of strong electron correlations and an unconventional origin of the superconductivity.
LINE 3. COMPUTATIONAL BIOCHEMISTRY AND SOFT MATTER

Absence of a Stable Secondary Structure Is Not a Limitation for Photoswitchable Inhibitors of βArrestin/βAdaptin 2 Protein-Protein Interaction

Many protein-protein interactions (PPIs) are mediated by short, often helical, linear peptides. Molecules mimicking these peptides have been used to inhibit their PPIs. Recently, photoswitchable peptides with little secondary structure have been developed as modulators of clathrin-mediated endocytosis. Here we perform a systematic analysis of a series of azobenzene-crosslinked peptides based to assess the relevance of secondary structure in their interaction with β-adaptin 2 and to identify photoswitchable inhibitors. We observe that flexible structures show a greater inhibitory capacity and enhanced photoswitching ability and that the absence of helical structures in free inhibitor peptide is not a limitation for their capacity. Therefore, our designed inhibitors expand the field of potential inhibitors of PPIs to the wide group of flexible peptides, and we argue against using a stable secondary structure as a sole criterion when designing PIPPI candidates.
Insight into the Binding of DFG-out Allosteric Inhibitors to B-Raf Kinase Using Molecular Dynamics and Free Energy Calculations

L. Coronel, JM, Granadino-Roldán, M. Pinto, MS. Tomas, MD. Pujol, J. Rubio-Martinez.

Interaction of B-Raf with some inhibitors

In this work, the energetics and structural keys of the binding of five different inhibitors to the oncogenic protein V600EB-Raf in its DFG-out conformation have been studied using MD and free energy calculations. The results obtained show that the binding free energy of these complexes is due to the individual contribution of many residues distributed throughout the binding site of the protein.
Carbohydrates are critical macromolecules in biochemistry and cell biology, notably in immunity and intercellular communication. Enzymes that help build, degrade, and modify these sugars are attractive targets for drug development, and also find major use in industrial biotechnology. But carbohydrates are often highly complex and flexible structures, ones that are synthetically challenging, and studying their intimate chemistry has proved difficult. In this Perspective, we review new molecular dynamics simulations using quantum mechanics and molecular mechanics (QM/MM) techniques that have fostered understanding of the mechanisms and conformational dynamics of two important classes of carbohydrate-active enzymes in the past decade. The two classes, glycosyl hydrolases and glycosyltransferases, catalyze the hydrolysis and synthesis, respectively, of glycosidic bonds between carbohydrates and their partner molecules. The results of the QM/MM simulations have fueled ongoing debate over which of several proposed mechanisms these enzymes follow.

Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from ab initio QM/MM dynamic simulations
A. Ardèvol, C. Rovira
Chloroform alters interleaflet coupling in lipid bilayers: an entropic mechanism
R. Reigada, F. Sagués.

![Illustration of the entropic linking mechanism that explains the interleaflet coupling effect of chlf molecules (green) in phase separating lipid bilayers. Double-tailed lipids and chol are shown schematically in grey ordered domains are plotted in red shading and disordered domains in blue shading.](image)

The molecular mechanism of general anesthesia is an unresolved issue. Some proposals suggest that the anesthetic compound changes the phasic state of the cell membrane. By means of molecular simulations we have unveiled that chloroform increases interleaflet interaction and promotes phase symmetry between membrane leaflets. This effect is due to an entropic mechanism that tries to avoid chloroform confinement to one of the leaflets. The reported effect and its consequences in transmembrane lipid distribution, cholesterol flip-flop, membrane curvature and mechanical properties is of interest for the understanding of the consequences of adding chloroform in cellular functions and its anesthetic effect.
LINE 4. Reactivity and Reactions Dynamics

Kinetic Monte Carlo simulations of the water gas shift reaction on Cu(111) from density functional theory based calculations
H.Prats, L. Álvarez, F. Illas, R.Sayós

A systematic first-principles kinetic Monte Carlo study of the water gas shift reaction taking place on the Cu(111) surface is presented including adsorption/desorption, diffusion and other elementary chemical reactions, totalling 34 elementary steps with all reaction rates obtained from periodic density functional theory based calculations. The kinetic Monte Carlo simulations were carried out at different partial pressures and temperatures. The results show that the diffusion processes cannot be neglected and that the reaction proceeds predominantly through an associative mechanism via a carboxyl intermediate. The analysis of temperature dependence shows an Arrhenius behaviour with an apparent activation energy of 0.5-0.8 eV in agreement with experiments and with previous microkinetic studies. The effect of H$_2$O/CO ratio on this reaction shows that mixtures with higher CO proportion enhance the reactivity, also in accordance to previous studies. The present work allows one to ascertain the relative importance of the different steps in the mechanism of water gas shift reaction over Cu(111) at several conditions as well as to see the coverage evolution of the surface.
Morphology Effects in Photoactive ZnO Nanostructures: Photooxidative Activity of Polar Surfaces.

ZnO nanostructures with variable morphology were prepared by a microemulsion method and their structural, morphological, and electronic properties investigated by experimental and theoretical approaches using microscopy (high resolution transmission electron microscopy) and spectroscopic (X-ray diffraction, Raman, and UV-visible) tools, together with density functional theory calculations. Results provide a detailed insight into the relationship between surface-related physicochemical properties and the photochemical response of ZnO nanostructures, such as that the light-triggered photochemical activity of ZnO nanostructures is related to the predominance of highly-active (polar) surfaces, in particular, the amount of Zn-terminated (0001) surfaces, rather than band gap sizes, carrier mobilities, and other variables usually mentioned in the literature. The computational results highlight the oxidative capability of polar surfaces, independently of the degree of hydration.
Photodissociation dynamics of homonuclear diatomic molecules in helium nanodroplets. The case of Cl\textsubscript{2}@(4He)\textsubscript{N}.

A. Vilà, M. González, R. Mayol.

A hybrid method based on TDDFT (helium) and quantum dynamics (molecule) was developed to investigate the photodissociation of diatomic homonuclear molecules in superfluid 4He nanodroplets (ND), $T=0.37$ K, allowing for the first time to study this important type of process. In the first application of this method the Cl\textsubscript{2}(B←X) photodissociation for Cl\textsubscript{2}(v=0,X)@(4He)\textsubscript{N} nanodroplets with $N=50-500$ was examined. A time scale of a few ps was found for this process and at the high velocities involved an efficient energy exchange between the Cl atoms and the ND occurs, releasing up to 91% of the molecular energy ($N=500$). Moreover, the strongly oscillating final velocity distribution of the Cl dissociating atoms observed was due to the existence of confinement quantum interferences. As far as we know this is the first time that this type of interferences is described in the reaction dynamics context. We hope that these results will encourage the experimentalists to investigate these interesting systems.
A molecular dynamics study of the evolution from the formation of the C₆F₆-(H₂O)_n small aggregates to the C₆F₆ solvation

Isosurface (isovalue 0.5) plot of the H₂O probability density in the C₆F₆-(H₂O)_9 (left-hand side) and the C₆F₆-(H₂O)₁₈ (right-hand side) aggregates. Results correspond to Molecular Dynamics simulations at a temperature of 20 K

In this study, the evolution from the formation of small clusters to the solvation of hexafluorobenzene is investigated by means of Molecular Dynamics simulations. For this purpose, the non permanent charge interaction contributions are described using an Improved Lennard-Jones model (ILJ) in combination with the electrostatic energy calculated in agreement with the permanent electric quadrupole and dipole moments of C₆F₆ and H₂O, respectively. To test the potential energy function, three different approaches of H₂O-C₆F₆ have been considered and BSSE-corrected energies at the CCSD(T)/aug-cc-pVTZ level have been calculated for the three approaches. By using the constructed force field, the structure and energetics of some small aggregates, C₆F₆-(H₂O)_n (n = 1–6), the formation of the first solvation shell C₆F₆-(H₂O)_n (n = 9–36) and the solvation of C₆F₆ by 400 molecules of H₂O have been investigated. The small aggregates and the formation of the first solvation shell have been simulated using a microcanonical (NVE) ensemble of particles, while an isobaric–isothermal ensemble (NpT) has been used to investigate the solvation of of C₆F₆. In order to approximate the system formed by one C₆F₆ molecule and 400 H₂O molecules to a large (infinite) system, periodic boundary conditions have been imposed in the simulation of the solvation C₆F₆. It has been found that the first solvation shell is only closed when the number of water molecules exceeds those needed to complete it. This fact evidences a high competition between C₆F₆-H₂O and H₂O-H₂O interactions.
III.2 PUBLICATION LIST

ARTICLES

1. *Theoretical study of the free energy surface and kinetics of the hepatitis C virus NS3/NS4A serine protease reaction with the NS5A/5B substrate. Does the generally accepted tetrahedral intermediate exist?*
 J. A. Martínez-González, M. González, L. Masgrau, R. Martínez

2. *A single glycosidase harnesses different pyranoside ring transition state conformations for hydrolysis of mannosides and glucosides.*

3. *Structural Analysis of the Coordination of Dinitrogen to Transition Metal Complexes*
 B. Peigné, G. Aullón.

 D. H. Galván, R. Núñez-González, R. Rangel, P. Alemany, A. Posada-Amarillas

5. *Tuning Crystal Ordering, Electronic Structure, and Morphology in Organic Semiconductors: Tetrathiafulvalenes as a Model Case*
 Adv. Funct. Mat. Accepted. DOI:10.1002/adfm.201502446.

6. *Evidence for a boat conformation at the transition state of GH76 α-1,6-mannanases; key enzymes in bacterial and fungal mannoprotein metabolism.*

 W. Mahy, P. Plucinski, J. Jover, C. G. Frost.

 Angew. Chem. Int. Ed. Accepted. DOI: 10.1002/anie.201508005

9. *Dust in brown dwarfs and extra-solar planets. IV. Assessing TiO2 and SiO nucleation for cloud formation modelling*
 G. Lee, Ch. Helling, H. Giles, S. T. Bromley

45
M. Manadé, F. Viñes, F. Illas.

11. *First-principles study of structural, elastic and electronic properties of α-, β- and γ-graphyne*
A. Ruiz-Puigdollers, G. Alonso, P. Gamallo
Carbon 96 (2016) 879.

N. Ansari, F. Nazari, F. Illas
Carbon 96 (2016) 911.

Chemistry & Biology 22 (2015) 31

15. *First evidence of light-induced spin transition in molybdenum(IV).*

16. *Increasing the effective energy barrier promoted by the change of a counteranion in a Zn-Dy-Zn SMM: slow relaxation via the second excited state.*

17. *Modulation of single-molecule magnet behaviour via photochemical 2+2 cycloaddition.*

18. *Towards the tailored design of benzotriazinyl-based organic radicals displaying a spin transition.*
M. Fumanal, S. Vela, J.J. Novoa, J. Ribas-Arino

19. *Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease.*
J. A. Martínez-González, A. Rodríguez, M. P. Puyuelo, M. González, R. Martínez

21. *Orientational Preference of Long, Multicenter Bonds in Radical Anion Dimers: A Case Study of pi-[TCNB](2)(2-) and pi-[TCNP](2)(2-)*

22. *Amending the Anisotropy Barrier and Luminescence Behavior of Heterometallic Trinuclear Linear [MII-LnIII-MII] (LnIII = Gd, Tb, Dy; MII = Mg/Zn) Complexes by Change from Divalent Paramagnetic to Diamagnetic Metal Ions.*

23. *Negatively Charged Metallacarborane Redox Couples with Both Members Stable to Air.*

24. *A New Conformation With an Extraordinarily Long, 3.04 angstrom Two-Electron, Six-Center Bond Observed for the -[TCNE](2)(2-) Dimer in [NMe4](2)[TCNE](2) (TCNE=Tetracyanoethylene).*

25. *Exploring the stereodynamics and microscopic mechanism of the O(3P) + CH4, CD4 → OH + CH3, OD + CD3 combustion reactions.*
R. Martínez, P. A. Enríquez, M. P. Puyuelo, M. González

26. *Study by crossed beams and ab initio techniques of an environmentally interesting process: gas-phase high energy collisions between N2O(1Σ+) and Li+(1S0).*

M. Mondelo-Martell, F. Huarte-Larrañaga.

29. Distortion Pathways of Transition Metal Coordination Polyhedra Induced by Chelating Topology.
S. Alvarez.
Chem. Rev. published ASAP (2015), doi: 10.1021/acs.chemrev.5b00537

30. New coordination features: a bridging pyridine and the forced shortest non-covalent distance between two CO32- species

31. The complete conformational free energy landscape of β-xylose reveals a two-fold catalytic itinerary for β-xylanases.
J. Iglesias-Fernández, L. Raich, A. Ardèvol, C. Rovira.

32. Dynamical effects on the magnetic properties of dithiazolyl bistable materials.

33. How to determine accurate chemical ordering in several nanometer large bimetallic crystallites from electronic structure calculations.
S.M. Kozlov, G. Kovács, R. Ferrando, K.M. Neyman.

34. What do we mean when we talk about bonds.
S. Alvarez.

36. Large magnetic anisotropy in mononuclear metal complexes.

37. The nature of the C-Br ... Br-C intermolecular interactions found in molecular crystals: a general theoretical-database study.

38. Insight into the Binding of DFG-out Allosteric Inhibitors to B-Raf Kinase Using Molecular Dynamics and Free Energy Calculations.
L. Coronel, JM, Granadino-Roldán, M. Pinto, MS. Tomas, MD. Pujol, J. Rubio-Martínez
39. The origin of the antiferromagnetic behaviour of the charge-transfer compound (HMTTF)[Ni(mnt)(2)].
S. Vela, M. Fumanal, M. Deumal.

40. A trinuclear CuII complex with functionalized s-heptazine N-ligands: molecular chemistry from a g-C\textsubscript{3}N\textsubscript{4} fragment.

41. Neodymium 1D systems: targeting new sources for field-induced slow magnetization relaxation.

42. Higher Fluorescence in Platinum(IV) Orthometallated Complexes of Perylene Imine Compared with their Platinum(II) or Palladium(II) Analogues.

43. A Combined Kinetico-mechanistic and Computational Study on the Competitive Formation of Seven- versus Five-membered Platinacycles; the Relevance of Spectator Halide Ligands.

44. Different topologies in three manganese-mu-azido 1D compounds: magnetic behavior and DFT-quantum Monte Carlo calculations.
F. A. Mautner, C. Berger, M. Scherzer, R. C. Fischer, L. Maxwell, E. Ruiz, R. Vicente

45. On the Mechanism of Phenolic Formylation Mediated by TiCl\textsubscript{4} Complexes: Existence of Diradical Intermediates Induced by Valence Tautomerism.

46. Computational studies of glycoside, carboxylic ester, and thioester hydrolases mechanisms. A review.
C. Rovira, P. Reilly.

47. Electrocatalytic Proton Reduction by Dimeric Nickel Complex of a Sterically Demanding Pincer-type NS2 Aminobis(thiophenolate) Ligand.
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

49. *Substituent Effects in N-(thioether)-Functionalized Bis(Diphenylphosphino)amine-type Ligands on the Coordination Sphere of Iron(II) Complexes: Structures, Magnetism and Bonding.*

50. *Links between the crystal and electronic structure in the new family of unconventional superconductors A₂Cr₃As₃ (A = K, Rb, Cs).*
P. Alemany, E. Canadell

51. *Cr-Cr Quintuple Bonding: Ligand Topology and Interplay Between Metal-Metal and Metal-Ligand Bonding.*
A. Falceto, K. H. Theopold, S. Alvarez.

52. *Embedding of the Saddle Point of Index two on the PES of the Ring Opening of Cyclobutene.*
W. Quapp, J. M. Bofill.

A. Ardèvol, C. Rovira

54. *Discovery of the K₄ Structure Formed by a Triangular π Radial Anion.*

55. *The molecular mechanism of the catalase-like activity of horseradish peroxidase.*

56. *Unravelling the Key Driving Forces of the Spin Transition in π-Dimers of Spirobiphenalenyl-Based Radicals.*
M. Fumanal, F. Mota, J.J. Novoa, J. Ribas-Ariño

57. *Kinetic Monte Carlo simulations of the water gas shift reaction on Cu(111) from density functional theory based calculations.*
H.Prats, L. Alvarez, F. Illas, R.Sayós
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

59. 5D quantum dynamics of the H2@SWNT system: Quantitative study of the rotational-translational coupling.
M. Mondelo-Martell, F. Huarte-Larrañaga.

60. Structure and Electronic Properties of Cu Nanoclusters on Mo2C(001) and MoC(001) Surfaces.
S. Posada-Pérez, F. Viñes, J.A. Rodriguez, F. Illas.

N. Pueyo-Bellafont, P.S. Bagus, F. Illas.

J. M. Bofill

63. Photodissociation dynamics of homonuclear diatomic molecules in helium nanodroplets. The case of Cl2@(^4He)N.
A. Vilà, M. González, R. Mayol

64. Spin Adapted versus Broken Symmetry Approaches in the Description of Magnetic Coupling in Heterodinuclear Complexes.

68. Some remarks on the Model of the Extended Gentlest Ascent Dynamics.
J. M. Bofill, W. Quapp, E. Bernuz.

70. Theoretical modeling of two-step spin-crossover transitions in FeII dinuclear systems.
J. Cirera, E. Ruiz.

71. Accurate analytic intermolecular potential for the simulation of Na+ and K+ ion hydration in liquid water
N. Faginas-Lago, A. Lombardi, M. Albertí, G. Grossi

72. From the (NH\textsubscript{3})\textsubscript{2–5} clusters to liquid ammonia: Molecular dynamics simulations using the NVE and NpT ensembles
M. Albertí, A. Amat, Ll. Farrera, F. Pirani

73. Quantum dynamics study of the H\textsubscript{2} molecule confined in Single-Walled Carbon Nanotubes.
M. Mondelo-Martell, F. Huarte-Larrañaga.

74. Born-Oppenheimer and Renner-Teller Quantum Dynamics of CH(X2Π) + D(2S) reactions on three CHD potential surfaces
P. Gamallo, S. Akpinar, P. Defazio, C. Petrongolo

75. Mapping the Ultrafast Changes of Continuous Shape Measures in Photoexcited Spin Crossover Complexes without Long-Range Order

76. Energetic stability of adsorbed H in Pd and Pt nanoparticles in a more realistic environment.
S.M. Kozlov, H.A. Aleksandrov, K.M. Neyman.

77. Theoretical Study of the Stoichiometric and Reduced Ce-Doped TiO\textsubscript{2} Anatase (001) Surfaces.
78. *Ferromagnetic Graphene Nanoribbons: Edge Termination with Organic Radicals.*

79. *O₂ dissociation on M@Pt core-shell particles for 3d, 4d and 5d transition metals.*

80. *Synthesis and Characterization of Blue Faceted Anatase Nanoparticles through Extensive Fluorine Lattice Doping.*

82. *How does the water solvent and glutathione ligands affect the structure and the electronic properties of Au²₅(SR)₁₈⁻?*

83. *The role of hydrogen bonds in the stabilization of silver-mediated cytosine tetramers.*

84. *Chloroform alters interleaflet coupling in lipid bilayers: an entropic mechanism.*
R. Reigada, F. Sagués.

85. *Ion-Water Cluster Molecular Dynamics Using a Semiempirical Intermolecular Potential*
N. Faginas-Lago, M. Albertí, A. Laganà, A. Lombardi

86. *Formylation of Electron-Rich Aromatic Rings Mediated by Dichloromethyl Methyl Ether and TiCl₄: Scope and Limitations.*

87. *Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction*

88. *Reduced ceria nanofilms from structure prediction*
S. M. Kozlov, I. Demiroglou, K. M. Neyman, S. T. Bromley
89. **Reply to “Entropic factors also contribute to the high melting points of polyhedral alkanes”**.
S. Shaik, S. Alvarez.

90. **Dynamic interplay between catalytic and lectin domains of GalNAC-transferases modulates protein O-glycosylation**.

91. **Privateer: a software for conformational validation of cyclic carbohydrate structures**.

92. **Macromolecular Crowding upon in-vivo-Like Enzyme-Kinetics: Effect of Enzyme-Obstacle Size Ratio**.

93. **Assembling Nonplanar Polyaromatic Units by Click Chemistry. Study of Multicorannulene Systems as Host for Fullerenes**.

94. **Metal-charge density wave coexistence in TTF[Ni(dmit)]_2**.

95. **Reactivity of the Free and (5,5)-Carbon Nanotube-Supported AuPt Bimetallic Clusters towards O_2 Activation: A Theoretical Study**.
F. Shojael, M. Mousavi, F. Nazari, F. Illas.

96. **Validation of Koopmans’ Theorem for Density Functional Theory Binding Energies**.
N. Pueyo-Bellafont, F. Illas, P.S. Bagus.

97. **A Molecular View of Cisplatin’s Mode of Action: Interplay with DNA Bases and Acquired Resistance**.
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

98. **Self-assembled trityl radical capsules – implications for dynamic nuclear polarization.**

99. **Trends in the adsorption and reactivity of hydrogen on magnesium silicate nanoclusters**
I. Oueslati B. Kerkeni, S. T. Bromley

100. **Theoretical Study of Electronic and Tribological Properties of H-BNC2/graphene, h-BNC2/h-BN and h-BNC2/h-BNC2 Bilayers.**
N. Ansari, F. Nazari, F. Illas.

101. **Structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling.**
H.A. Aleksandrov, K.M. Neyman, G.N. Vayssilov.

102. **Towards an accurate and computationally-efficient modelling of Fe(II)-based spin crossover materials.**
S. Vela, M. Fumanal, J. Ribas-Arino, V. Robert

103. **Donor-anion interactions at the charge localization and charge ordering transitions of (TMTTF)$_2$AsF$_6$ probed by NEXAFS.**

104. **Adsorption Properties of Trifluoroacetic on Anatase (101) and (001) Surfaces: A Density Functional Theory Study.**

105. **Born-Oppenheimer and Renner-Teller coupled-channel quantum reaction Dynamics of O$(\theta P) + H^+_2(X_2\Sigma^+_g)$ collisions**
P. Gamallo, P. Defazio, M. González, C. Petrongolo, M. Paniagua

106. **Revealing chemical ordering in Pt-Co nanoparticles using electronic structure calculations and X-ray photoelectron spectroscopy.**

107. **Quantum interferences in the photodissociation of Cl$_2$(B) in superfluid helium nanodroplets (4He)$_n$.**
A. Vilà, M. González, R. Mayol
III. Scientific Activity of IQTCUB Members

108. Quantum dynamics of the pick up process of atoms by superfluid helium nanodroplets. The Ne + (4He)_{1000} system.
A. Vilà, M. González, R. Mayol

109. Relaxation dynamics of helium nanodroplets after photodissociation of a dopant homonuclear diatomic molecule. The case of Cl_{2}(4He)_{N}.
A. Vilà, M. González, R. Mayol

110. Equilibrium microphase separation in the two-leaflet model of lipid membranes.
R. Reigada, A. S. Mikhailov.

111. Nanomechanics of Bidentate Thiolate Ligands on Gold Surfaces
M. E. Zoloff-Michoff, J. Ribas-Arino, D. Marx

113. Binding of azole drugs to heme: A combined MS/MS and computational approach.

114. Methane Capture at Room Temperature: Adsorption on Cubic delta-MoC and Orthorhombic beta-Mo_{2}C Molybdenum Carbide (001) Surfaces.
S. Posada-Pérez, J.R.D.S. Politi, F. Viñes, F. Illas.

115. Structural control over spin localization in triarylmethyls
I. Alcon, S. T. Bromley

117. Design of a Structural Database for Homoleptic Transition Metal Complexes
J. Fernández-Valparís, S. Alvarez.
118. **Surfaces are Different: A Perspective on Structural, Energetic, and Electronic Properties of (001) Surfaces of Alkaline Earth Metal Oxides as Calculated with Hybrid Density Functional Theory.**

119. **Exploring the Activity of a Novel Au/TiC(001) Model Catalyst towards CO and CO$_2$ Hydrogenation.**

120. **On the Hydrogen Adsorption and Dissociation on Cu Surfaces and Nanorows.**

121. **One-pot synthesis of 4-aminated pyrrolo[2,3-d]pyrimidines from alkynylpyrimidines under metal-catalyst-free conditions.**

122. **Triplet-Singlet Gap in Structurally Flexible Organic Diradicals.**

123. **A molecular dynamics study of the evolution from the formation of the C$_6$H$_6$-(H$_2$O)$_n$ small aggregates to the C$_6$F$_6$ solvation**
M. Albertí, A. Amat, A. Aguilar, F. Huarte-Larrañaga, J.M. Lucas and F. Pirani

J. M. Bofill, W. Quapp.

125. **Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO$_2$ and H$_2$.**
S. Posada-Pérez, F. Viñes, J.A. Rodriguez, F. Illas.
BOOK CHAPTERS AND PROCEEDINGS

1. *QM/MM calculations on selectivity in homogeneous catalysis*
 J. Jover, F. Maseras.

2. Comparison of the Cr-Cr quadruple and quintuple bonding mechanisms
 A. Falceto, S. Alvarez.

3. *Ab Initio Wavefunction Approaches to Spin States*
 C. Sousa, C. de Graaf.
 Spin States in Biochemistry and Inorganic Chemistry: Influence on Structure and Reactivity (Wiley)
III.3 Other Activities

Doctorals Theses 2015

1. *A Study of Nanostructuring Effects on Model Heterogeneous Catalysts*
 Sergey M. Kozlov
 Facultat de Química, Universitat de Barcelona
 January 2015

2. *Ab initio molecular dynamics study of thiolate-protected gold clusters and their interaction with biomolecules.*
 Víctor Rojas Cervellera
 Universitat Politècnica de Catalunya.
 July 2015

3. *Quantum dynamics of physicochemical processes in superfluid 4He nanodroplets.*
 Arnau Vilà Casanovas
 Facultat de Química, Universitat de Barcelona
 September 2015

4. *Radical-pair formation in organic π-stacked architectures*
 Maria Fumanal Quintana
 Facultat de Química, Universitat de Barcelona
 October 2015

Masters Theses 2015

1. *Structure, elastic and electronic properties of pristine and doped graphyne. A DFT study.*
 Antonio Ruiz Puigdollers
 Facultat de Química, Universitat de Barcelona
 July 2015

2. *Theoretical study of the adsorption of N₂, O₂ and CO₂ in different faujasite structures.*
 Gerard Alonso Benito
 Facultat de Química, Universitat de Barcelona
 July 2015
3. **Kinetic Monte Carlo simulations of the water-gas shift reaction on copper catalysts from density functional theory based calculations**
Hèctor Prats Garcia
Facultat de Química, Universitat de Barcelona
July 2015

4. **Optimització d’un camp de forces reactiu per l’adsorció de CO\textsubscript{2} sobre X-zeolita (X=Ca, Na).**
Núria Sambola Marcial
Facultat de Química, Universitat de Barcelona
July 2015

5. **Angular momentum effects on the pick up process of neon atoms by superfluid helium nanodroplets.**
Miquel Blancafort Jorquera
Facultat de Química, Universitat de Barcelona.
July 2015

6. **Crowding Effects on Oligomeric Enzymes: Kinetics Analysis of the ALKP-Catalyzed Hydrolysis**
Claudia Hernández Carro
Facultat de Farmàcia, Universitat de Barcelona.
July 2015

7. **Capture of Ne atoms by ^4\text{He} nanodroplets at low energies. Quantum vs. classical comparison at J=0.**
Arturo Sopena Moros
Facultat de Química, Universitat de Barcelona.
July 2015

8. **Simulació de l’adsorció de gasos en metal-organic frameworks, usant un camp de forces reactiu.**
Carles Martí Aliod
Facultat de Química, Universitat de Barcelona.
July 2015
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

SCIENTIFIC CONFERENCES AND MEETINGS 2015

Journées de la Division Chimie de Coordination (JCC) de la Société Chimique de France
Talence (France)
Analyse de forme des composées de coordination (plenary lecture).
S. Alvarez.

ACS National Meeting
Boston (USA)
Reaction pathway prediction and differentiation in the TBP geometries found in vanadium-phosphatase protein complexes using shape analysis.

Computational modeling of nanostructured ceria for the rational design of catalytic materials
A. Bruix, A. Figueroba, F. Illas, K.M. Neyman

Pacifichem 2015,
Honolulu (USA)
Distortions in decavanadates and how that may impact interactions with biological interfaces. (comunicació oral).

European Workshop on Theoretical approaches of Molecular Magnetism: Jujols VIII
Bages (France)
Spin Crossover-induced Changes in the Coordination Sphere.
S. Alvarez.
Room temperature magnetoresistance in single-molecule devices.
E. Ruiz.
Modeling the ligand tuning effect over the transition temperature in Spin-Crossover systems using Density Functional Methods.
J. Cirera.

Workshop aportando valor al CO₂, organized by The Spanish Technological Platform for CO₂ (PTECO2) and the Spanish Technological Platform for Sustainable Chemistry (SusChem)
Madrid (Spain)
Influence of impurities in CO₂ capture over a zeolitic material

6th Iberian Meeting on Colloids and Interfaces (RICI6)
Gimerâes (Portugal)
CO₂ separation from multicomponent mixtures by adsorption in MOF Cu-BTC and zeolite 13X
D. Bahamón, A. Díaz-Marquez, P. Gamallo, L. F. Vega
In-vivo-like study of the excluded volume effects on the kinetics of enzymatic reactions

Crowding effects on oligomeric enzymes: kinetic analysis of the ALKP-catalyzed hydrolysis
C. Hernández, C. Balcells, M. Via, I. Pastor, J.L. Garcés, S. Madurga, M. Cascante, F. Mas

Dissolution of nanomaterials in the context of safety assessment studies. Relevance of dynamic and equilibrium speciation techniques

Coupling of conformational and ionization equilibria in a linear polymer. The site binding/rotational state (SBRIS) modelling
S. Madurga, J.L. Garcés, M. Borkovec

Masterquímica XI
Barcelona (Spain)

Estudi teòric de l’adsorció de O₂, N₂ i CO₂ sobre faujasites amb diferents distribucions de Na⁺ preadsorbit
G. Alonso, R. Sayós, X. Giménez, P. Gamallo

Efecte de l’aglomeració macromolecular en enzims oligomèrics; anàlisi cinètica de la hidròlisi de fosfat catalitzada per ALKP
C. Hernández, C. Balcells, M. Via, I. Pastor, J.L. Garcés, S. Madurga, M. Cascante, F. Mas

Simulació per Dinàmica Browniana de processos de reacció-difusió de proteïnes en medis intracel·lulars
M. Via, P.M. Blanco, S. Madurga, E. Vilaseca, F. Mas

XXXI Annual meeting of the reference network of R+D+I on Theoretical and Computational Chemistry
Girona (Spain)

Effect of Na⁺ addition of O₂, N₂ and CO₂ on Faujasite frameworks: a DFT study

Effects of reaction conditions on copper-catalyzed water-gas shift reaction: a kinetic Monte Carlo study
H. Prats, L. Álvarez, F. Illas, R. Sayós

Ionization mechanism of citric acid in water. An ab initio study and statistical-mechanics treatment of NMR titration data.
S. Madurga, J.L. Garcés, M. Nedyalkova, F. Mas
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

Fundamentals of Methanol Synthesis on Molybdenum Carbide Based Catalysts
S. Posada-Pérez, F. Viñes, P.J. Ramírez, J.A. Rodríguez, F. Illas

Magnetic Coupling in Heterodinuclear Complexes
D. Reta-Mañeru, R. Costa, R. Valero, I.P.R. Moreira, F. Illas

Triarylmethyl Radicals: Tunneable Building Blocks for Molecular Spintronics
I. Alcón, S.T. Bromley

Effects of Reaction Conditions on Copper-Catalyzed Water-Gas-Shift Reaction: A Kinetic Monte Carlo Study
H. Prats, L. Álvarez-Falcón, F. Illas, R. Sayós

VI IQTCUB Symposium
Barcelona (Spain)

Theoretical study of O\textsubscript{2}, N\textsubscript{2} and CO\textsubscript{2} adsorption over faujasites with different preadsorbed Na+ distributions

Crowding effects on oligomeric enzymes: kinetic analysis of the ALKP-catalyzed hydrolysis
C. Hernández, C. Balcells, M. Via, I. Pastor, J.L. Garcés, S. Madurga, M. Cascante, F. Mas

Brownian motion simulations of reaction-diffusion processes of proteins in intraacellular media
P.M. Blanco, M. Via, S. Madurga, J.L. Garcés, E. Vilaseca, F. Mas

Coupling of conformational and ionization equilibria in a linear polymer. The site binding/rotational state (SBRIS) modelling
S. Madurga, J.L. Garcés, M. Borkovec

Stabilization of Open-Shell States in Purely Organic Molecules
D. Reta

Effects of Reaction Conditions on Copper-Catalyzed Water-Gas-Shift Reaction: A Kinetic Monte Carlo Study
H. Prats, L. Álvarez-Falcón, F. Illas, R. Sayós

Accurate determination of chemical ordering in several nm large bimetallic nanoparticles
G. Kovács, S. M. Kozlov, R. Ferrando, K. M. Neyman
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

10th European Conference on Computational Chemistry
Fulda (Germany)

- Water gas shift reaction on Cu(111) surface: A first-principles based kinetic Monte Carlo study
 R. Sayós, H. Prats, L. Álvarez, F. Illas

- QM/MM study of a viral serine protease reaction mechanism: Importance of the active centre description
 J. A. Martínez, M. González, A. Skelton

European Conference on Surface Science (ECOSS 31)
Barcelona (Spain)

- DFT study of the Si/Al ratio in the adsorption of O₂, N₂ and CO₂ on faujasite.

- Influence of step sites in the water-gas shift reaction on copper surfaces
 H. Prats, L. Alvarez, P. Gamallo, F. Illas, R. Sayós

IV New trends in Computational Chemistry for Industry Applications
Barcelona (Spain)

- Impact of van der Waals interactions on the water gas shift reaction over copper surfaces
 H. Prats, L. Álvarez, P. Gamallo, F. Illas, R. Sayós

- The importance of framework cations in the selective adsorption of CO₂ compared to O₂ and N₂ in faujasite structures.
 G. Alonso, R. Sayós, X. Giménez, P. Gamallo

- In-vivo-like study of the excluded volume effects on the kinetics of enzymatic reactions

- Brownian motion simulations of reaction-diffusion processes of proteins in intraacellular media
 P.M. Blanco, M. Via, S. Madurga, J.L. Garcés, E. Vilaseca, F. Mas

- Triarylmethyl Radicals: Potential Building Blocks for Molecular Spintronics
 I. Alcón, D. Reta, I.P.R. Moreira, S.T. Bromley

- Impact of van der Waals Interactions on the Water Gas Shift Reaction over Copper Surfaces
 H. Prats, L. Álvarez-Falcón, P. Gamallo, F. Illas, R. Sayós

- Surface Contact Engineering in Photoactive ZnO Nanostructures
 O. Lamiel-García, F. Viñes, A. Iglesias-Juez, M. Fernández-García, F. Illas
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

Electronic-Structure-Based Chemical Descriptors: (In)Dependence on Self-Interaction and Hartree-Fock Exchange
A. Notario-Estévez, S.M. Kozlov, F. Viñes, F. Illas

Performance of Density Functional Theory Based Methods in Predicting Core-Level Binding Energies and the Physical Meaning of Kohn-Sham Orbital Energies
N. Pueyo-Bellafont, P.S. Bagus, F. Illas

Effect of charge transfer between CeO$_2$(111) support and Pt nanoparticles on their properties
S.M. Kozlov, K.M. Neyman

Accurate determination of chemical ordering in several nm large bimetallic nanoparticles
G. Kovács, S. M. Kozlov, R. Ferrando, K. M. Neyman

First approach to the diffusion of hydrogen confined in single-walled carbon nanotubes using 6D quantum dynamics
M. Mondelo-Martell, F. Huarte-Larrañaga

4th workshop on Theoretical Chemistry and Computational Modeling
Madrid (Spain)

Studying the CO$_2$ capture problem in dry air through DFT calculations applied of faujasite frameworks
G. Alonso, R. Sayós, X. Giménez, P. Gamallo

Kinetic Monte Carlo simulations of the water-gas shift reaction on copper catalysts from DFT calculations.
H. Prats, L. Álvarez. P. Gamallo, F. Ilas, R. Sayós

XV Congress of the Spanish Biophysical Society (SBE 2015)
Granada (Spain)

In-vivo-like study of the excluded volume effects on the kinetics of enzymatic reactions
C. Balcells, C. Hernández, M. Via, I. Pastor, J.L. Garcés, S. Madurga, E. Vilaseca, M. Cascante, F. Mas

Brownian motion simulations of reaction-diffusion processes of proteins in intraacellular media
M. Via, P.M. Blanco, S. Madurga, J.L. Garcés, E. Vilaseca, F. Mas

Crowding effects on oligomeric enzymes: kinetic analysis of the ALKP-catalyzed hydrolysis
C. Hernández, C. Balcells, M. Via, I. Pastor, J.L. Garcés, S. Madurga, M. Cascante, F. Mas
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

Congress of Theoretical Chemists of Latin Expression – Chitel 2015
Torino (Italy)

Performance of Exchange-Correlation Functionals on Transition Metals
F. Viñes

Computational Approaches to Materials Design – CAMD 2105
Aveiro (Portugal)

Performance of Exchange-Correlation Functionals on Transition Metals
F. Viñes

Sociedad Española de Catálisis – SECAT 2015
Barcelona (Spain)

Catalizadores de Carburo de Molibdeno para la Síntesis de MEtanol
S. Posada-Pérez, F. Viñes, J.A. Rodríguez, F. Illas

9th RES Users’ Conference & 4th Annual HPC Advisory Council Spain Conference
Barcelona (Esponya)

Supercomputation and Realistic Models of Photocatalysts Nanoparticles
F. Illas

CECAM workshop: Emergent structural and electronic phenomena at interfaces of nanoscale oxides
EPFL, Lausanne (Switzerland)

A plethora of polymorphs: oxide nanofilms and nanoporous oxide phases from structure prediction
S.T. Bromley

Nanostructured metal oxides and transition metal nanoparticles interacting with oxide surfaces from density-functional modelling
S.M. Kozlov, K.M. Neyman

ELECSPIN 2015 – International Workshop on Organic and Graphene ELECtronics and SPINtronics
UAB centro de congreses, Barcelona (Spain)

Controlling Spin Localisation in Tryarylmethyl Radicals
S. T. Bromley

FOXES (Formation of Oxides around Evolved Stars) kick-off meeting
Bildungszentrum Hotel, Basel (Switzerland)

Structures of Oxide Clusters Entering Dust Formation
S. T. Bromley

66
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

Gordon Research Conference: Clusters & Nanostructures
Melia Golf Vichy Catalan Business and Convention Center, Girona (Spain)

Metal Oxides and their Alloys: Clusters versus Bulk
S. T. Bromley

British Association for Crystal Growth 46th Annual Conference
Queen Mary University of London, London (United Kingdom)
Nanocrystals versus nanoclusters: limits on crystallinity and small size
S. T. Bromley

Workshop: Silicates in Space 2015
University of Heidelberg, Heidelberg (Germany)

Nucleation of SiO and Silicates from the Bottom-up
S. T. Bromley

Workshop “Catalysis Meets Sensing”
Karlsruhe Institute of Technology, Karlsruhe (Germany)

Density-functional modelling of metal-metaloxide nanostructures for catalysis and energy technologies
K.M. Neyman

International FOXSI Symposium, SFB “Functional Oxide Surfaces and Interfaces (FOXSI)”
(May 11-13, invited lecture)
Institute of Materials Chemistry, Vienna University of Technology, Vienna (Austria)

Metal-metaloxide nanostructures in catalysis and energy technologies from a viewpoint of density functional modelling
K.M. Neyman

International Symposium on Frontiers in Computational Catalysis
Tsinghua University, Beijing (P.R. China)

Theoretical modelling in heterogeneous catalysis: As simple as possible, but not simpler
K.M. Neyman

11th International Conference on Diffusion in Solids and Liquids
Munich (Germany)

Interactions of hydrogen with transition metal nanoparticles from first principles
K.M. Neyman
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

CECAM Workshop “Modeling metal-based nanoparticles: toward realistic environments”
CEMES, Tolouse (France)

As simple as possible, but not simpler: Density-functional modelling of metal nanoparticles in catalysis
K.M. Neyman

XII European Congress on Catalysis (EuropaCat) “Catalysis: Balancing the use of fossil and renewable resources” (August 30-September 4, keynote lecture)
Kazan (Russia)

Approaching complexity in heterogeneous catalysis by density-functional modelling
K.M. Neyman

A GGA+U DFT investigation of silver atom, trimer and tetramer supported by a nanosized particle Ce$_2$O$_{42}$
V.A. Nasluzov, S. Laletina, E.I. Ivanova Shor, A.M. Shor, K.M. Neyman

Thomas Young Centre, The London Centre for the theory and Simulation of Materials
London (United Kingdom)

As simple as possible, but not simpler: DFT modelling of nanostructures in catalysis and energy technologies
K.M. Neyman

Chemical Reactions at Surfaces (Gordon Research Seminar), Surface Science Techniques for Addressing Contemporary Issues
Ventura (USA)

Combining theory and experiment for the rational design of nanostructured Pt-CeO$_2$ catalytic materials with maximum noble-metal efficiency

3S15 28th Symposium on Surface Science (3S15)
Les Arcs 1800 (France)

Atomically dispersed and oxide-supported platinum in fuel cell catalysis: from surface science to in-situ spectroelectrochemistry
International Workshop “Low-precious-metal-content catalysts for PEM fuel cells”
Dijon (France)

Computational studies of nanoparticulate models of catalysts in the ChipCAT project
K.M. Neyman

Tuning Pt catalysts for fuel cells by metal-oxide interactions
S.M. Kozlov, K.M. Neyman

Modeling interactions of transition metal species with ceria nanoparticles for applications in fuel cell catalysts
A. Figueroba, G. Kovács, A. Bruix, K.M. Neyman

Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

WG3 Meeting of the COST Action CM1104 “Reducible oxide chemistry, structure and functions”
Poznan (Poland)

Recent progress in density functional studies of ceria-based nanostructures: Inspiration by experimentalists from Erlangen and Prague
A. Figueroba, S.M. Kozlov, K.M. Neyman

XXVI International Symposium on Molecular Beams (ISMB 2015)
Parador of Segovia, Segovia (Spain)

Dynamics and kinetics of the \(X + H_2^+ \rightarrow XH_2^+ \) \((X=\text{He}, \text{Ne}, \text{Ar}) \) capture processes as a function of temperature
P. A. Enríquez, M. P. Puyuelo, R. Martínez, P. Gamallo, M. González

Dynamics and kinetics of \(O + H_2^+ \rightarrow \text{OH}^+ + \text{H}, \text{OH} + \text{H}^+ \) on the two lowest potential energy surfaces
R. Martínez, M. Paniaigua, C. Petrongolo, P. Gamallo, J. Mayneris-Perxachs, M. González

Stereodynamics and reaction mode of the \(\text{O}(^3\text{P}) + \text{CH}_4, \text{CD}_4 \rightarrow \text{OH} + \text{CH}_3, \text{OD} + \text{CD}_3 \) combustion reactions on the ground PES
R. Martínez, P. A. Enríquez, M. P. Puyuelo, M. González

Guided ion beam and ab initio studies of the \(\text{Na}^+ + i-\text{C}_3\text{H}_7\text{Br} \) and \(\text{Na}^+ + i-\text{C}_3\text{H}_7\text{OH} \) gas phase reactive collisions

Ion-molecule collisions: Crossed-beams and guided-ion-beams and computational studies of reactive processes
E. López, J.M. Lucas, J. De Andrés, M. Alberti and A. Aguilar
Quantum Dynamics Study of the H2 molecule confined in Single-walled Carbon Nanotubes
M. Mondelo-Martell, F. Huarte-Larrañaga

XIII International Workshop on Quantum Reactive Scattering (QRS 2015)
University of Salamanca, Salamanca (Spain)

Quantum dynamics of chemical and physical processes involving superfluid helium nanodroplets
A. Vilà, M. González, R. Mayol

Born-Oppenheimer and Renner-Teller coupled-channel quantum reaction dynamics of O + H2 collisions
P. Gamallo, P. Defazio, C. Petrongolo, M. Paniagua, M. González

The 5th Workshop Quantum Days in Bilbao Quantum Days in Bilbao: Mathematical Methods in Atomic and Molecular Physics
BCAM - Basque Center for Applied Mathematics, Bilbao (Spain)

Quantum dynamics of physicochemical processes involving atoms or molecules and superfluid 4He nanodroplets
A. Vilà, M. González, R. Mayol

24th International Symposium on Ion Atom Collisions (ISIAC 2015)
Sant Jordi College, University of Barcelona, Barcelona (Spain)
Symposium organized by members of IQTCUB: A. Aguilar (Chair), M. Albertí, J. de Andrés, J.M. Lucas, F. Huarte (Secretary)

Born-Oppenheimer and Renner-Teller coupled-channel quantum reaction dynamics of O + H2 → OH+ + H, OH + H+
M. González, P. Gamallo, P. Defazio, M. Paniagua, C. Petrongolo

An environmentally relevant process: Collisions between ground state Na ions and N2O molecules in the 0.1–5 KeV

Experimental and computational study of the Li+ + i-C3H7Br and Li+ + i-C3H7OH gas phase reactive collisions

Ion-molecule collisions in Titan’s atmosphere: A prebiotic mechanism
E. López, D. Ascenzi, J. M. Bofill, A. Aguilar.

Quantum dynamics of the hydrogen molecule diffusion along a single-walled carbon nanotube
M. Mondelo-Martell, F. Huarte-Larrañaga
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

Spanish-Italian Medicinal Chemistry Congress (SIMMC 2015),(PRBB)
PRBB, Barcelona (Spain)

Design, Synthesis, cell growth inhibition and antitumor screening of New 6,9-disubstituted Purines by inhibition of CDK4/6

Design, Synthesis and Biological Activity of new K-ras inhibitors
L. Grau, R. Soucek, J. Rubio, MD. Pujol

II Simposio de Jóvenes Investigadores de la Sociedad Española de Química Terapéutica.
Barcelona (Spain)

Studies of CDK4/6 inhibitors such as antitumor agents: Design, Synthesis and cell growth inhibition
A. Vinuesa, O. Abián, J. Rubio, MD. Pujol

Preparation of new pyrazolidin-3-ones. Evaluation of their antitumor activity by K-ras inhibition
L. Grau, R. Soucek, J. Rubio, MD. Pujol

15-th V.A. Fock Meeting on Quantum and Computational Chemistry
Federal Far East University, Vladivostok (Russia)

Analyzing the Interplay Between Local and Global Symmetries in Molecular Chemistry
P. Alemany

3rd International Conference on Materials Science
Universidad Austral de Chile, Valdivia (Chile)

Continuous Shape and Symmetry Measures: a new Tool for Structural Characterization
P. Alemany

Molecular Quantum Dynamics: Benchmarks and State of the Art
CECAM, Lausanne (Switzerland)

Nonadiabatic Molecular Dynamics with Conditional Wave Functions

Psi-k 2015 Conference
Kursaal, San Sebastià (Spain)

Adiabatic and Nonadiabatic Molecular Dynamics with Conditional Wave Functions
III. SCIENTIFIC ACTIVITY OF IQTCUB MEMBERS

International Conference on Unsolved Problems on Noise
Casa de la Convalescència, Barcelona (Spain)

Role of Current-Voltage Correlations on the Electric Power of Nanoscale Devices
G. Albareda, F. L. Traversa, and X. Oriols.

Current Fluctuations Originating from Non-Metallic (Physical) Leads

XXIX International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2015)
Toledo (Spain)

Crossed-beams and ab initio study of the gas phase charge transfer with excitation in N₂O and Li⁺ collisions of environmental interest

Quantum dynamics of the hydrogen molecule confined in single-walled carbon nanotubes
M. Mondelo-Martell, F. Huarte-Larrañaga

ICIQ-FIFC Spain-Japan Symposium on Theoretical and Computational Chemistry of Complex Systems
Tarragona (Spain)

J. M. Bofill, W. Quapp, I. de P. R. Moreira.

How Does Nature Make Glycosidic Bonds. Ab initio QM/MM Metadynamics Investigations
C. Rovira

CECAM School: Quantum dynamics in molecular systems: theory, modelling, simulation.
IDRIS (Institut du développement des ressources informatiques et scientifiques), Orsay (France)

Diffusion of hydrogen along SWCNT: a first approach using quantum dynamics methods
M. Mondelo-Martell, F. Huarte-Larrañaga

2nd BSC International Doctoral Symposium
Universitat Politècnica de Catalunya, Barcelona (Spain)

Quantum dynamics study of the hydrogen molecule confined in single-walled carbon nanotubes
M. Mondelo-Martell, F. Huarte-Larrañaga
Virtual Environments and detailed simulations of molecular processes, Symposium in honor of Prof. A. Laganà
MonteLino, Bettona, Perugia (Italy)

Experimental and computational studies of ion-molecule reactions
A. Aguilar

Explicit control over spin states in technology and biochemistry (ECOSTBIO) workshop
University of Marseille, Marseille (França)

An ionizable triptophan residue imparts catalase activity to a peroxidase core. Insights from QM/MM simulations
C. Rovira

Carbohydrate active enzymes in medicine and biotechnology
University of St. Andrews, St. Andrews (UK)

Sugar conformational changes and reactivity of carbohydrate-active enzymes. Ab initio QM/MM metadynamics investigations
C. Rovira

Future trends in protein science. 13th workshop in Protein.DTU
Technical University of Denmark, Lyngby (Denmark)

How Does Nature Make Glycosidic Bonds
C. Rovira

Glycosyl cation day
University of Poitiers, Poitiers (France)

Sugar conformational changes and reactivity of carbohydrate-active enzymes. Ab initio QM/MM metadynamics investigations
C. Rovira
RESEARCH STAYS IN RECOGNIZED CENTERS

P. Gamallo MATGAS, Barcelona (Spain)
Invited visiting professor. January-February 2015

G. Alonso MATGAS, Barcelona (Spain)
Invited visiting professor. January-June 2015

M. Albertí Univeristà di Perugia, Perugia (Italy)
Research stay. February-July 2015

M. Mondelo Martell University of Bielefeld, Bielefeld (Germany)
Predoctoral stay. March-April 2015

J. Jornet Somoza University of the Basque Country, San Sebastián (Spain)
Research stay. April-July 2015

R. Reigada Max Planck Institute, Berlin (Germany)
Invited visiting professor. May 2015

G. Albareda Max Planck for the Structure and Dynamics of Matter, Hamburg (Germany)
Invited visiting scientist. July 2015

J. Ribas University of Wroclaw, Wroclaw (Poland)
Invited visiting scientist. July 2015

K.M. Neyman Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany)
Invited visiting scientist. July-August 2015

C. Climent Donostia International Physics Center, Donostia (Spain)
Predoctoral research stay. July and September 2015
P. Alemany Departamento de Química, Universidad Católica del Norte, Antofagasta (Chile)
Invited visiting scientist. October 2015

S. Posada-Pérez Brookhaven National Laboratory, Upton (USA)
Predoctoral stay. October-December 2015
PARTICIPATION IN COMPETITIVE FUNDED RESEARCH PROJECTS

Xarxa de Referència d’R+D+I en Química Teòrica i Computacional (XRQTC)
Francesc Illas Riera, Universitat de Barcelona
2014
Departament d’Innovació, Universitats i Empresa. Generalitat de Catalunya

Grup d’Estructura Electrònica.
Santiago Álvarez Reverter, Universitat de Barcelona
2014SGR662, 2014-2016
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

Grup de Bioquímica Integrativa
Marta Cascante Serratosa, Universitat de Barcelona
2014SGR1017, 2014-2016
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

Simulació molecular aplicada (MOLSIMAP)
Lourdes Vega Fernández, MATGAS
2014SGR1582, 2014-2016
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

Grup de Recerca Reconegut i Finançat per la Generalitat de Catalunya
Francesc Illas Riera
Universitat de Barcelona
2014SGR97, 2014-2016
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR), Generalitat de Catalunya

Grup de Dinàmica de Reaccions Químiques
Antonio Aguilar Navarro, Universitat de Barcelona
2014SGR0025, 2014-2016
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

Química Orgànica Experimental, Teòrica i Computacional
Josep Maria Bofill Vilà, Universitat de Barcelona
2014SGR139, 2014-2016
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

Estructura i funció en macromolècules
Carme Rovira Virgili, Universitat de Barcelona
Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)

ICREA Acadèmia
Eliseo Ruiz, Universitat de Barcelona
2014-2018,
ICREA (Generalitat de Catalunya)
Simulación de sistemas cuánticos nanoestructurados fuera equilibrio.
Angel Rubio Secades, Universitat del País Basc
IT578-13, 2013-2018
Comunidad Autónoma del País Basco

Estructura electrónica y propiedades de moléculas y sólidos inorgánicos.
Eliseo Ruiz Sabin, Universitat de Barcelona
MICINN

Mecanismo de transición de fase e interacción magnética en cristales moleculares magnéticos que presentan transición de espin
Juan J. Novoa Vide and Mercè Deumal, Universitat de Barcelona
MAT2014-54025-P, 2015-2017
Ministerio de Economía y Competitividad (MINECO)

Captura y separación de gases y contaminantes en procesos Industriales sostenibles
Ramón Sayós Ortega / Pablo Gamallo Belmonte, Universitat de Barcelona
Ministerio de Economía y Competitividad (MINECO)

Fisicoquímica de las interacciones y fenómenos de transporte a nivel coloidal entre iones, macromoléculas y nanopartículas de interés ambiental
Francesc Mas Pujadas, Universitat de Barcelona
CTM2012-39183-C02-02, 2013-2015
Ministerio de Economía y Competitividad (MINECO)

Quantum-chemical study and computational design of advanced materials
Francesc Illas Riera, Universitat de Barcelona
Ministerio de Economía y Competitividad (MINECO)

Modelización de Materiales Formados por Mezclas de Oxidos con Relavancia Tecnologica y Medioambiental.
Stefan Bromley, Universitat de Barcelona
MAT2012-30924, 2012-2015
Ministerio de Economía y Competitividad (MINECO)

Theoretical modeling of the reactivity of nanostructures relevant to catalysis and to energy technologies
Konstantin Neyman, Universitat de Barcelona
Ministerio de Economía y Competitividad (MINECO)

Estudio teórico de la dinámica y cinética de reacciones químicas. Química atmosférica, procesos de combustión y aplicaciones a sistemas enzimáticos.
Miguel González Pérez, Universitat de Barcelona
CTQ2011-27857-C02-01, 2012-2015
Dirección General de Investigación (DGI)
Dispositivos Electrónicos de baja Dimensionalidad para Aplicaciones de Radiofrecuencia y Digitales: Simulación y Desarrollo de Software.
Xavier Oriols Pladevall, Universitat Autònoma de Barcelona
TEC2012-31330, 2013-2015
Ministerio de Economía y Competitividad (MINECO)

Experimentación y modelización computacional de dinámica de reacciones químicas.
Antonio Aguilar Navarro (IP1), Fermín Huarte Larrañaga (IP2), Universitat de Barcelona
Ministerio de Economía y Competitividad (MINECO)

Moduladores fotoconmutables sintéticos para manipular remotamente proteínas endógenas: fotocontrol in vivo de canales iónicos pentáméricos.
Carme Rovira Virgili, Universitat de Barcelona
PCIN-2015-163-C02-01, 2015-2017
Ministerio de Economía y Competitividad (MINECO)

Simulation of reactive processes in proteins and enzymes by means of ab initio molecular dynamics and QM/MM techniques.
Carme Rovira Virgili, Universitat de Barcelona
Ministerio de Economía y Competitividad (MINECO)

Materia blanda forzada, activa y viva.
Jaume Casademunt Viader and Francesc Sagués Mestre, Universitat de Barcelona
Ministerio de Economía y Competitividad (MINECO)

El dominio único de c-Src: dominios proteicos desordenados en la superficie de la membrana celular.
Miquel Pons Vallès, Universitat de Barcelona
Ministerio de Economía y Competitividad (MINECO)

Knowledge Led Structure Prediction for Nanostructures
Scott Woodley, University College London
EP/K038958/1, 2013-2018
Engineering and Physical Sciences Research Council (UK)

Computational modelling and molecular dynamics simulations of oil/water wettability on carbonate rocks and clays
Ramón Sayós Ortega / Pablo Gamallo Belmonte, Universitat de Barcelona
Referència, 308465
Contracto de arrendamientos y servicios de I+D con REPSOL, S.A.
COMPHOTOCAT: - Computational design of TiO$_2$ based nanoparticles for improved photocatalytic activity towards water splitting under visible sunlight
Francesc Illas Riera
Universitat de Barcelona
PRACE - 2014112608, 2015-2016
Partnership for Advanced Computing in Europe (PRACE)

Reducible oxide chemistry, structure and functions
Francesc Illas Riera, (representative in Spain), Konstantin Neyman (deputy representative in Spain),
Universitat de Barcelona
CM1104, 2012-2016
European Framework for Cooperation in Science and Technology (COST)

Explicit Control Over Spin-States in Technology and Biochemistry
Marcel Swart (University of Girona), Carme Sousa Romero (participant of the Universitat of Barcelona)
Universitat de Barcelona
CM1305, 2014-2018
European Framework for Cooperation in Science and Technology (COST)

Nanostructured materials for solid-state hydrogen storage
Konstantin Neyman, Universitat de Barcelona (member)
MP1103, 2011-2015
European Framework for Cooperation in Science and Technology (COST)

Design of thin-film nanocatalysts for on-chip fuel cell technology
Konstantin Neyman, Universitat de Barcelona
FP7-NMP.2012.1.1-1, Ref. No.310191, 2012-2016
European FP7 'Cooperation' - Research theme: 'Nanosciences, nanotechnologies, materials and new production technologies'

Theoretical Chemistry and Computational Modelling
Juan Novoa Vide, Universitat de Barcelona
H2020-MSCA-ITN-2014-642294
Horizon 2020, Innovative Training Networks

A comprehensive and standardised e-infrastructure for analysing medical metabolic phenotype data (PhenoMeNal)
Marta Cascante Serratosa
European Union.

PhenoMeNal: A comprehensive and standardised e-infrastructure for analysing medical metabolic phenotype data (PhenoMeNal).
Marta Cascante Serratosa, Universitat de Barcelona
654241, 2015-2018
European Union
Deciphering the Metabolism of Haematological Cancers (HaemMetabolome)
Marta Cascante Serratosa, Universitat de Barcelona
675790, 01/10/2015-30/09/2019
European Union

NOMAD – Novel Materials Discovery
Matthias Scheffler, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
NoMaD - 676580, 2015-2018
Horizon 2020-EINFRA-5-2015, Centers of Excellence for Computing applications

Device simulation (RF), NannoMechanics and Spintronics.
David Jiménez Jiménez, Universitat Autònoma de Barcelona
604391 Graphene, 2013-2016
European Commission (FET Flagship)

Dynamical processes in open quantum systems: pushing the frontiers of theoretical spectroscopy (DYNAMO).
Angel Rubio Secades, Universitat del País Basc
ERC-2010-AdG_20100224, 2011-2016
European Research Council (ERC)