Theoretical Study of low-spin S=1/2 Mononuclear Single-Molecule Magnets <u>Martín Amoza</u> and Eliseo Ruiz

Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional (IQTC) Grup d'Estructura Electrònica, Universitat de Barcelona martin.amoza@ub.edu

Introduction

We have theoretically studied some transition metal mononuclear single-molecule magnets with a spin total value of $S=\frac{1}{2}$ and compare with the available experimental data. We demonstrate that the simplest Fe^{III} sandwich-type complex has a field-induced mononuclear SMM behavior and reasoned why it analogous complex with Co^{II} it is not.

Fe^{III} sandwich complex (Ferrocenium)

1000 -

Methodology

CASSCF/CASPT2+RASSI+SINGLE_ANISO calculations MOLCAS 8.0 with ANO-RCC basis. CASSCF/NEVPT2+QDPT calculations ORCA 3.0.1 with def2-TZVPP basis (g-tensor components.)

Active space used: Ferrocenium (5,5); Cobaltocene (7,5); Mn^{IV} T_d complex (9,8)

G-tensor

To understand the different values of the component we have that each component g_{kl} :

 $\chi "_{M}$ vs frequency for [FeCp₂]PF₆ but only in the presence of an static field.

$\boldsymbol{g}_{kl} = \boldsymbol{g}_{e} + \frac{\zeta_{eff}}{2\boldsymbol{S}} \sum_{i,p} \frac{\langle \varphi_{i} | \boldsymbol{i}_{k} | \varphi_{p} \rangle \langle \varphi_{p} | \boldsymbol{i}_{l} | \varphi_{i} \rangle}{\varepsilon_{p} - \varepsilon_{i}} - \frac{\zeta_{eff}}{2\boldsymbol{S}} \sum_{p,a} \frac{\langle \varphi_{p} | \boldsymbol{i}_{k} | \varphi_{a} \rangle \langle \varphi_{a} | \boldsymbol{i}_{l} | \varphi_{p} \rangle}{\varepsilon_{a} - \varepsilon_{p}}$ [1]

where ζ_{eff} is the spin-orbital coupling constant, I_k is the k-component of the angular momentum operator and φ are the molecular orbitals (with orbital energy ε) with the subindex *i*, *p* or *a* to indicate double-occupied, singly-occupied or empty orbitals, respectively.

Low-spin Mn^{IV} T_d Complex

Collaboration with Rodolphe Clérac (Bordeaux) and Jeremy M. Smith (Indiana): PhB(MesIm)3Mn≡N

A $d_{x^2-y^2} d_{z^2} d_{xy} d_{xy}$ orbital occupation from where the low-energy excitation from the doubly-occupied $d_{x^2-y^2}$ to singly-occupied d_{xy} orbital results according Eq.1 in a large positive g_z . It is a SMM.

Co^{II} sandwich complex (Cobaltocene)

Ising Axis give by the g_z component of the g-tensor. zero-fie

Cobaltocene ground state corresponds to a $d_{x^2-y^2}^2 d_{z^2}^2 d_{xy}^2 d_{xz}^{-1}$ orbital occupation occupation. The low-energy excitation from the singly-occupied d_{xz} to singly-occupied d_{yz} results in a low negative g_z . It is not a SMM.

Acknowledgements

Spanish Ministerio de Economía y Competitividad (grants MAT2012-38319-C02 and CTQ2015-64579-C3-1-P). M.A. acknowledges the Ministerio de Educación, Cultura y Deporte for an FPU predoctoral grant. E.R. thanks Generalitat de Catalunya for an ICREA Academia grant. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the CSUC.

Temperature dependence of the χ T product at 0.1 T and field dependence of magnetization at different temperatures. Solid lines are simulations obtained from SINGLE_ANISO package from MOLCAS.

Overestimation of χT curve due to the difference between the calculated and the experimental g-tensor values.

