H₂ dissociation on transition metal carbide surfaces

Juan José Piñero,^a Pedro J. Ramírez,^c Stefan T. Bromley,^{a,b} Francesc Illas,^a Francesc Viñes,^a and José A. Rodriguez,^d

Departament de Ciència de materials i Química Física & IQTCUB, Universitat de Barcelona a) **UNIVERSITAT** DE C/Martí i Franquès 1, 08028 Barcelona (Spain) BARCELONA b) ICREA, Institució Catalana de Recerca i Estudis Avançats Institut de Química Teòrica i Computacional Passeig de Lluís Companys, 23, 08010 Barcelona (Spain) c) Facultad de Ciencias, Universidad Central de Venezuela NATIONAL LABORATORY Apartado 20513, Caracas 1020-A (Venezuela) **ICREA** d) Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (USA) **Computational Materials Science Laboratory** Juanjopinero@ub.edu

Introduction

The project deals with the H₂ adsorption and dissociation into H + H on the (001) surfaces of various transitions metal carbides (TMCs; TM=Ti, V, Zr, Nb, Mo, Hf, Ta), all displaying the NaCl crystallographic structure.

Computationals details

Models

- **DFT** calculations
- VASP code¹
- PBE functional²
- Climbing Image Nudge Elastic Band (CI-NEB) method³
- Supercell of (2×2)
- 64 atoms (32 C and 32 M)
- 2 fixed and 2 relaxed layers.
- 6 sites explored for H ads.
- 19 sites explored for H₂ ads.

Relaxed

(M-top, 1), (C-Top, 2), Bridge (3), 4-fold hollow (4), 3-fold hollow formed by 2 metal and 1 Carbon atoms (MMC, 5), and 3-fold hollow formed by 2 Carbon and 1 metal atoms (CCM, 6).

Adsorption energy on different TMCs									
H ac	$E_{ads} = E_{H/TMC} - (E_H - E_{TMC})$ Clean surface $H \text{ atom on vacu}$							uum	
	E (eV)	TiC	VC	ZrC	NbC	δ-ΜοϹ	HfC	TaC	
	Н	-2.73	-2.13	-2.84	-2.01	-2.93	-2.77	-2.30	
	H ₂	-0.46	0.01	-0.61	-0.07	-1.19	-0.93	-0.12	
	barrier	0.49	1.09	0.73	1.26	1.21	1.19	1.21	

Most stable H adsorption site: C-top, except in TaC, Ta-Top. Most stable H₂ adsorption site: C-top on TiC, ZrC, δ -MoC, and HfC. M-top on VC, NbC, and TaC.

Conclusions

- H₂ dissociation occurs on (001) TiC surface
- TiC barrier: 0.49 eV. (The best candidate to produce H₂ dissociation.
- The order to cover the surface was found: First H atoms are adsorbed on C-Top, secondly H atoms are adsorbed on Ti-Top and, finally, H₂ molecules are physisorbed on Ti-Top.
- 3 different H sites are found: H adsorbed on C-Top and on Ti-Top, and H₂ molecules physisorbed on Ti-Top.
- Computational studies were done on other TMCs so to find candidates to perform experimental studies.
- Results show that H₂ dissociation is also thermodynamically favourable on TiC, ZrC, HfC, and δ -MoC.