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INTRODUCTION

¢ Living cells constitute crowded cytoplasmic environment,
 composed of a great amount of of different biopolymers. These
represent an obstacle for other biopolymers by means of non-
: specific interactions. In addition, they have a considerable effect
¢ in diffusional and reactivity properties that directly affect the
¢ enzymatic reactivity, protein assembly and folding, structural
organization of the DNA and so on. This phenomenon is known
¢ as a macromolecular crowding [1].

In this scope, theoretical models that describe these processes in
: homogeneous environment are no longer valid and it is necessary
i to create new models that describe such crowded environment [2].
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THEORETICAL BACKGROUND

Deterministforce f = Friction coeficient
At D = Difusion coeficient
r(t+ At) =r(t) — TVV(T, t) +V2DAtL(t) ¢ = Bstocastic factor
Reacction
The reactions between the particles are k k
cat

given by the simplest scheme for e
enzymatic catalysis, the mechanism of E+S=ES = E+P
Michaelis-Menten: k.

Applying the law of mass action to Michaelis-Menten's mechanism:
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Diffusion
Brownian motion of the particles is described by Langevin's equations of
movement. E )
stocasticforce
dr(t) At
= —— V2D
dt f vt + £ VV = Potential gradient
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CONCLUSIONS

o The new fitting procedure allows to obtain the bimolecular kinetic constant
of the Michaelis-Menten mechanism with shorter simulation time.
o The appropriate estimation of kf needs short but precise simulations that

require many repetitions to obtain accurate profiles of the evolution of the
substrate.

o In crowded systems is also possible to reproduce all kinetics until achieve
times with experimental significance.

o We anticipate our assay to be a starting point for more sophisticated simulations
that allow us to study the effect of the excluded volume for some
enzymatic systems.
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OBJETIVES -..'
o Simulate an in vivo like medium to study the crowding effect
in enzymatic kinetics. Since such simulations are very expensive,
here we have developed a Browniana Dynamics reaction-diffusion
code, which unlike previous studies, is able to obtain realistic kinetic

constants from shorter simulations by means of numerical
extrapolation procedures.

o Study the effect of the excluded volume for some enzymatic
systems that follow the Michaelis-Menten mechanism [3].

SIMUL

ION

C++ code

= Motion of the particles: Stochastic by means of a
Brownian motion algorithm.

Reactions: Stochastic processes by means of Monte Carlo
criterion. (probabilities of reaction directly related to the
kinetic constants) [3] Specie || Radius | Diffusion constant(?
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» Snapshot of a simulation with Enzyme |2.33 0.1051
obstacles (yellow), enzyme (red), 5
complex (gray), substrate (blue) and Substrate| 0.5 0.4901
product (orange). Obstacle |4.0 0.0613

(d) Calculated from Stockes-Einstein equation

Temporary evolution of particle populations with 40% agglomeration
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