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Summary

@ Cellular metabolism is a complex network of biochemical reactions, and its accurate reconstruction may elucidate essential components in the understanding cellular function, disease mechanisms,
and therapeutic targeting.

Q Can we use computational methods to reconstruct condition-specific metabolic models with transcriptomic and metabolomic data?

We developed a Python pipeline that utilizes Genome-Scale Metabolic Models (GSMMs) and the CORDA algorithm to generate condition-specific models and used it to reconstruct the metabolism of
several colorectal cancer (CRC) cell lines and analyze the adjustment to metabolomics data, the reproductibility of CRISPR-KO data and the flux distribution through different metabolic pathways.

‘- Results indicate that our pipeline reconstructs models that reproduce metabolomics data accurately, but more fine tunning needs to be made to correctly predict therapeutic targets. The pipeline also
W elucidates differences in the metabolism of different CRC cell lines.
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* We designed a computational pipeline with bash and Python, using the available libraries
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