

Miquel Allés,^a Ángel Morales-García,^a Francesc Viñes,^a Michael Nolan^b

miguel.alles@ub.edu

Institut de Química Teòrica i Computacional UNIVERSITAT DE BARCELONA

^aDepartament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain

^bTyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland

- ground and excited potential energy surface.
- Compare adsorption energies between ground and excited state.
- Locate the **limiting step** for each surface path.

Computational details

VASP software

DFT with **PBE** *xc* funcional

Results

- Polar (000 $\overline{1}$) and (0001) surfaces present metallic character obtaining a negligible band gap.
- Hydrogen and oxygen molecule formation are the limiting steps for (0001) and (0001) surfaces.

Grimme's D3 correction

CI-NEB and **Improved Dimer** method for transition states

Ongoing work

(0001) and (0001) polar surfaces have been reoptimized neglecting **1/4 of the first** and **last layer atoms** to prevent charge transfer and obtain semiconducting behavior.²

- PBE xc functional underestimates band gap on non-polar (1010) and (1120) surfaces.
- **Concatenation of endothermic steps** leads to high section energy points around 6 eV for GS and 4.5 eV for the T_1 state.

Some cases have been optimized on the T_1 state to ensure that **SP calculations are a good** approximation for the excited state.

$E_{ads}(Opt) - E_{ads}(SP)$ (eV)	$(\mathbf{000\overline{1}})$	(0001)	$(10\overline{1}0)$	(11 20)
H ₂ O	0.00	-0.01	0.02	0.00
H ₂	0.00	0.00	0.02	0.00

(0001)

