Exploring the Photoactive Properties of MXenes for Water Splitting

Diego Ontiveros, Francesc Viñes, Carme Sousa

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain.

Institut de Química Teòrica i Computacional UNIVERSITAT DE BARCELONA

General Properties

- An effective photocatalyst needs good band alignment, efficient charge separation, minimal VBM/CBM overlap, anisotropic carrier mobilities, strong visible light absorption, and high solar-to-hydrogen (STH) efficiency.
- Cohesive energy, phonons \rightarrow energetical and dynamical stability.
- Overlap η_{STH} E_{coh} MXene

M = Transition Metal (Groups 3 – 6) X = C or N n = 1 - 4**T** = Termination (Groups 16 - 17)

Promising candidates for photocatalysing the water splitting process and produce clean H₂.^[1,2]

Electronic Structure

- Semiconductors $E_g \approx visible range$.
- H_{MX} MXene structures: $E_g \approx UV$.
- Indirect $\Gamma \rightarrow M$ (H_M) or $\Gamma \rightarrow K$ (H_{MX}) transitions.
- $VB \rightarrow C$ and M atoms, and T at lower energies.
- $CB \rightarrow d$ orbitals of M.

	(ev/at.)	(eV)	(ev)	(%)	(%)
$\mathbf{Zr}_{2}\mathbf{CO}_{2}$	-7.68	2.26	2.87	27.9	2.5
Sc_2CS_2	-5.52	3.23	3.34	35.2	0.9
Y_2CS_2	-5.52	3.42	2.93	38.5	2.7
$\mathbf{Sc}_{2}\mathbf{CSe}_{2}$	-5.16	2.75	3.15	31.9	1.4
Y_2CSe_2	-5.17	3.21	2.99	34.5	2.3
$\mathbf{S}\mathbf{c}_{2}\mathbf{C}\mathbf{C}\mathbf{l}_{2}$	-5.41	2.48	2.30	26.2	11.0
Y_2CCl_2	-5.42	2.44	1.89	31.7	21.3
$\mathbf{Sc}_{2}\mathbf{CBr}_{2}$	-5.09	2.31	2.31	27.1	10.9
$\overline{Y}_2 CBr_2$	-5.13	2.36	1.85	30.7	22.6
Y_2CI_2	-4.77	1.94	1.79	25.2	12.2

Band Alignment

- pH = 0: \checkmark band alignment for all cases, excepting Sc_2CSe_2 (on H_X surface).
- pH = 7: Some halide-terminated MXenes become unable to photocatalyze HER.
- H_{MX} : Janus \rightarrow intrinsic $\vec{E} \rightarrow e^- h^+$ separation.

<u>Objective</u>: Explore the photoactive effectiveness of MXenes in the water splitting process, through different photocatalytic properties.

Methods: DFT with PBE0 hybrid functional for electronic structure and GW-BSE for optical properties.

Charge Density

• Overlap(VBM, CBM) $\approx 25 - 38 \%$. • $H_M: VBM \rightarrow p(C)$ orbitals, $CBM \rightarrow M$ layers. • $H_{MX}: VBM \rightarrow H_X$ face, $CBM \rightarrow M-C$ layers. \mapsto asymmetry in charge distribution.

Optical Absorption

- H_M : Good optical absorption in visible range.
- H_{MX} : Optical absorption shifted to UV.
- $E_{\text{opt}}(Y) < E_{\text{opt}}(Sc)$.
- BSE \rightarrow Exciton $\rightarrow E_{\rm b} \approx 0.3 0.7 \, {\rm eV}$.
- STH efficiency: halide (11-23%) > chalcogen (1-3%).

Charge Carrier Mobility

- Along x (zigzag \checkmark) and y (armchair 1).
- Anisotropic electron carrier mobility, $\mu_e^x \neq \mu_e^y$.
- $H_{MX}: \mu_e^x < \mu_e^y$, $H_M: \mu_e^x > \mu_e^y$.
- Isotropic hole carrier mobility, $\mu_h^x \approx \mu_h^y$.
- L Except for $Sc_2CBr_2 \rightarrow Asymmetric$ anisotropy both in e and h (charge separation \checkmark)

CONCLUSIONS \checkmark

The photoactive potential of a group of 10 MXenes has been deeply explored using DFT calculations, showcasing robust stability, high charge carrier mobilities, strong visible light absorption, and promising solar-to-hydrogen efficiency. These features make them leading candidates for efficient water splitting photocatalysis, with $H_{\ensuremath{\mathsf{M}}}$ structures generally outperforming $H_{\ensuremath{\mathsf{M}} X}$ structures.

REFERENCES

[1] D. Ontiveros, F. Viñes, C. Sousa, J. Mater. Chem. A, 2023, 11, 13754–13764. [2] D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater., 2024, 7, e12774.

X diego.ontiveros@ub.edu

diegonti.github.io

