On the CO₂ Harvesting from N₂ Using Grazyne Membranes

 $\bigcup NIVERSITAT DE$ BARCELONA <u>Adrià Calzada</u>, Francesc Viñes, Pablo Gamallo

Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1–11, 08028, Barcelona, Spain

Institut de Química Teòrica i Computacional UNIVERSITAT DE BARCELONA

The increase in the concentration of CO_2 in the atmosphere is one of the

main drivers of climate change. In this context, the separation of CO_2 from

WE PROPOSE GRAZYNES

Grazynes are a subtype of graphynes, 2D single-layer C-based materials with sp and sp² hybridizations. atoms In grazynes, graphene-like stripes with sp² hybridized C To effectively use this N_2 , it must be in a high-purity state, which requires atoms are interconnected by acetylenic linkages with sp C atoms.

• • • •

 N_2 is a critical process.

MODELS

[1],[2]{2} => A

purification processes. Within the existing options, membrane-based Composed of one-ring wide graphene stripes separation stands out as a promising solution for CO_2 separation, boosting interconnected by acetylenic bonds, numerous benefits such as environmental friendliness, a high active surface spanning a distance equivalent to two triple area, and easy maintenance. bonds, with two acetylenic vacancies.

[1],[1]-grazyne

They can be modified in different ways 💥

linkages

DFT RESULTS

Creating Enlarging acetylenic acetylenic vacancies

[1],[2]{(0,0),2} □⇒ B

The difference between the structures lies in containing A-grazyne a solitary the acetylenic bond between consecutive pores, while the B-grazyne exhibits two adjacent acetylenic bonds followed by two vacancies.

MOLECULAR DYNAMICS RESULTS

CO₂ consistently shows higher membrane Grazyne Β A 11.8 30.6 20.1 14.9 11.9 31.0 20.2 15.0 Pressure (atm) diffusion rates than N_2 , regardless of the

The analysis of the selectivity confirms that CO_2 has a higher selectivity than N_2 , but this decreases as temperature goes up, following the rate constants, with a clear trend toward unity at higher temperatures. Therefore, lower temperatures are better for separating CO_2 from N₂, though this comes with a lower permeation rate.

grazyne model. The figure highlights a key temperature range between 100 and 500 K, where diffusion rates, r_i , exceed 1 s⁻¹, suggesting the potential use of grazynes as molecular separation membranes.

> 12 -B 450 400150 Femperature (K)

Generally, increasing the pressure leads to The KPD highlights two distinct regions: one more permeation, though some trends may $\int_{\Xi 1.2 \cdot 10^4}$ where adsorption is favored, and another fluctuate. It is important to remember that the $\frac{\exists}{\geq}1.0 \cdot 10^4$ where desorption is preferred. CO_2 shows a wider adsorption range. At p=1 atm and likelihood of a molecule passing through a 7.5 · 103 $5.0 \cdot 10^{3}$ pore depends on its arrival orientation. No T=300 K, neither CO_2 nor N_2 is inclined toward $2.5 \cdot 10^{-3}$ parallel permeation has been observed, thus adsorption, making grazynes effective for molecules approaching perpendicularly have separation membranes.

a higher chance of crossing.

REFERENCES

The number of CO_2 (# CO_2) and N_2 (# N_2) molecules that passed through shows that CO₂ diffuses more easily through both grazyne membranes. CO_2 makes up about 65-75% of the total molecules permeating through Agrazyne and 70-90% for B-grazyne. These results suggest a potential CO₂ enrichment of ca. 90%. This trend is also seen in the time evolution of the number of molecules that passed through B-grazyne, while a similar trend is observed for A-grazyne (not shown).

CONCLUSIONS

DFT and MD support the use of grazyne membranes for selective CO₂ separation A. Calzada, F. Viñes, P. Gamallo, ChemSusChem 2024, 71, e202400852. from N₂. Grazynes are capable of physisorbing CO₂ and N₂, thus avoiding material S. Kamalinahad, F. Viñes, P. Gamallo, J. Phys. Chem. C poisoning by molecular decoration, while the diffusion of CO₂ through the pores is **2019**, 123, 27140–27149. found to be rapid, yet easier than that of N_2 , in the rate order of the s⁻¹ in the 100-500 F. Viñes, A. Calzada, P. Gamallo, J. CO2 Util. 2023, 71, K temperature range. In addition, according to MD with equimolecular mixtures of 102459. CEX2021-001202-M $CO_2:N_2$, ca. 60-70% of CO_2 permeates the A-grazyne, with the remaining 30-40% Check out the paper! being N_2 . Conversely, B-grazyne achieves up to 90% CO₂ permeation.

AKNOWLEDGMENTS

PID2021-126076NB-100 PID2022-1381800 B-100 TED2021-129506B-C22 PRE2022-101313

Ac2216561